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A B S T R A C T

Due to the threat of quantum computers breaking most widely-deployed
public-key cryptography, standards bodies worldwide such as the US-based
National Institute of Standards and Technology (NIST), the International
Standards Organization (ISO), the Internet Engineering Task Force (IETF),
and the European Telecommunications Standards Institute (ETSI) have
already started working on standardizing quantum-resistant cryptographic
primitives and algorithms.

In particular, NIST is in the process of standardizing digital signatures
and public-key encryption (PKE) schemes. Focusing on the latter class
of primitives, an important criterion of evaluation set by NIST for PKE
schemes in its post-quantum cryptography (PQC) standardization process
is on whether they achieve the traditional notion of IND-CCA security.
However, a myriad of cryptographic applications have emerged in recent
times which not only require properties beyond IND-CCA security from the
underlying PKE schemes, but also require advanced functionalities from
such primitives. Since the NIST PQC standards for PKE are intended to
be widely used for decades to come, it is hence important to analyze such
schemes through the lens of “beyond IND-CCA” security properties and
“beyond basic PKE” functionalities.

This dissertation presents the following three contributions with respect
to generically enhancing quantum-resistant PKE schemes in the above ways
– especially in the context of NIST’s standardization efforts.

• First, we revisit the main target of IND-CCA security, and examine the
generic methods employed by certain important NIST PQC candidates
to achieve this notion. In particular, we study Kyber, the current standard
chosen by NIST, and FrodoKEM, a NIST third-round alternate candidate
which is also currently recommended by the German Federal Office for
Information Security (BSI). We point out subtle differences between the
methods used by the above two schemes and the standard IND-CCA
enhancing methods in the literature, and argue that these differences
invalidate the initial IND-CCA security claims made for the schemes.
Following our observations, we re-establish concrete IND-CCA security
of Kyber and FrodoKEM in the post-quantum setting by tailoring our
analysis to the above differences in a rigorous fashion.
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• Second, we consider two specific “beyond IND-CCA” properties – namely,
anonymity (or key-privacy) and robustness – which are quite important in
modern privacy-enhancing applications. Focusing on the common design
paradigm used by most NIST PQC candidates to construct PKE schemes,
we provide a modular analysis of the aforementioned properties for PKE
schemes built via this paradigm. We then apply our generic analysis
to establish post-quantum anonymity and robustness of PKE schemes
derived from Kyber and FrodoKEM. Along the way, we also highlight
a surprising property of Classic McEliece, a NIST PQC fourth-round
candidate which is also recommended by BSI, showing that it does not
lead to robust PKE schemes.

• Finally, we consider enhancing the decryption functionality of quantum-
resistant PKE primitives to a threshold (or, distributed) setting. This is
relevant in view of NIST’s recent plans to also standardize such threshold
cryptographic schemes. We first identify issues with the above design
paradigm used by NIST PQC candidates for PKE in the context of
obtaining IND-CCA secure and efficient threshold schemes. Then we
present an alternative paradigm called the “Hybrid” framework which
can be used to generically construct PKE schemes that have an efficient
distributed decryption functionality, and at the same time are provably
IND-CCA secure in a post-quantum setting. We also discuss applicability
of our framework to certain NIST PQC schemes: namely, the fourth-
round candidate Classic McEliece, and the third-round finalists NTRU
and Saber.
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Z U S A M M E N FA S S U N G

Angetrieben von der wachsenden Bedrohung weitverbreiteter Public-Key
Kryptographie durch Quantencomputer haben Standardisierungsagentu-
ren wie das US-basierte National Institute of Standards and Technology
(NIST), die Internationale Organisation für Normung (ISO), die Internet
Engineering Task Force (IETF), das Europäische Institut für Telekommu-
nikationsnormen (ETSI) mit der Standardisierung von sogenannten Post-
Quanten-Primitiven und Algorithmen begonnen.

Insbesondere NIST ist dabei Post-Quanten-Signaturen und Public-Key
Verschlüsselung zu standardisieren. Bei letzterer ist die konventionelle IND-
CCA Sicherheit von Verschlüsselungsverfahren ein wichtiges Kriterium des
NIST. Eine Vielzahl an neu aufkommenden Anwendungen fordern jedoch
zum einen Formen von Sicherheit, die IND-CCA Sicherheit übersteigen,
und zum anderen erweiterte Funktionalität von kryptographischen Primi-
tiven. Da NIST PQC Standards für ein weites Anwendungsfeld und für
Jahrzehnte in der Zukunft anwendbar sein sollen, ist es wichtig diese Pri-
mitiven mit Hinblick auf solche Formen von Sicherheit und Funktionalität
zu analysieren.

Diese Dissertation liefert die folgenden drei Beiträge, um Post-Quanten-
Verschlüsselungsverfahren generisch zu verbessern – speziell im Kontext
des NIST Standardisierungsprozesses.

• Zunächst wenden wir uns dem Hauptziel der IND-CCA Sicherheit zu
und untersuchen generische Methoden, die in bestimmten wichtigen
NIST PQC Kandidaten Anwendung finden. Insbesondere untersuchen
wir Kyber, der aktuell von NIST ausgewählte Standard, und FrodoKEM,
eine Alternative, die aktuell vom deutschen Bundesamt für Sicherheit in
der Informationstechnik (BSI) empfohlen wird. Wir identifizieren subtile
aber signifikante Diskrepanzen zwischen den von den beiden Verfahren
genutzten und den in der Fachliteratur untersuchten Techniken, um
IND-CCA Sicherheit zu erreichen. Dabei stellen wir fest, dass diese Un-
terschiede die ursprünglich behauptete Garantie der IND-CCA Sicherheit
ungültig machen. Eine rigorose Modellierung der Abweichungen erlaubt
uns die konkrete IND-CCA Sicherheit von Kyber und FrodoKEM durch
eine massgeschneiderte Analyse wiederherzustellen.
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• Zweitens betrachten wir zwei über IND-CCA Sicherheit hinausgehende
Eigenschaften, Anonymität und Robustheit, welche in modernen daten-
schutzsensitiven Anwendungen eine wichtige Rolle spielen. Wir kon-
zentrieren uns auf ein Designparadigma, das den meisten NIST PQC
Kandidaten unterliegt, und geben eine modulare Analyse der genannten
Eigenschaften für Verfahren, die auf diesem Paradigma basieren. Durch
unsere allgemeine Analyse können wir Post-Quanten-Anonymität und
Robustheit für zwei von Kyber und FrodoKEM abgeleitete Verfahren
zeigen. Dabei finden wir eine überraschende Eigenschaft des Classic
McEliece Verfahrens, einem anderen NIST PQC Kandidaten welches
ebenfalls vom BSI empfohlen wird, welche die Robustheit verhindert.

• Drittens betrachten wir die Entschlüsselungsfunktionalität von Post-
Quanten-Verfahren in einem “verteilten” Szenario. Dies ist relevant, da
NIST die Standardisierung solcher verteilten Verfahren ebenfalls plant.
Hierbei identifizieren wir Probleme des oben genannten Designpara-
digmas für die Konstruktion von IND-CCA-sicheren und effizienten
verteilten Verfahren. Wir präsentieren einen Ansatz, das sogenannte
“Hybrid” Paradigma, das es erlaubt, ein beweisbar IND-CCA-sicheres
Verschlüsselungsverfahren mit effizienter verteilter Entschlüsselung ge-
nerisch zu konstruieren. Zuletzt durchleuten wir die Anwendbarkeit
unseres Paradigmas auf die NIST PQC Kandidaten Classic McEliece,
NTRU und Saber.
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1
I N T R O D U C T I O N

In recent years, research groups in academia and industry have been devot-
ing a significant amount of effort towards building computers that operate
on the basis of quantum mechanical principles (or “quantum computers"
for short). A main motivation for this effort is that a quantum computer
can solve certain mathematical problems which are assumed to be difficult
for traditional computers. But though this may have positive applications
in areas such as pharmaceutical and chemical sciences, it also means that if
quantum computers could be realized on a large-scale, they would be able
to break most public-key cryptosystems deployed currently. This would
have serious consequences on the security of digital communications on
the Internet and elsewhere.

The above observation has essentially spawned the area of cryptographic
research known as post-quantum cryptography (PQC). A goal of PQC is to
develop practical cryptographic systems that can resist attacks mounted
by large-scale quantum computers. Even though it is not certain when
such quantum computers might become a real possibility, standards bodies
worldwide such as the US-based National Institute of Standards and Tech-
nology (NIST), the International Standards Organization (ISO), the Internet
Engineering Task Force (IETF), and the European Telecommunications Stan-
dards Institute (ETSI) have nonetheless started working on standardizing
cryptographic primitives and algorithms whose security relies on specific
mathematical problems being intractable even for quantum computers.
Such standardization efforts allow for a widespread deployment of PQC
solutions, in preparation for the quantum computing era.

In particular, NIST is currently in the process of standardizing digital
signatures and public-key encryption (PKE) schemes in its PQC standard-
ization process. The latter category of primitives will be the main focus
of this thesis. An important criterion of evaluation set by NIST for the
PKE candidates is whether the schemes achieve active security – i.e., the
standard notion of IND-CCA security – in a post-quantum setting. But in
general, it is more difficult to prove that a certain scheme achieves IND-CCA
security when compared to notions of passive security – i.e., OW-CPA or
IND-CPA security – especially in a post-quantum adversarial model. Hence,
most NIST PQC candidates for PKE employ some generic transformations
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2 introduction

that enhance passive security of a “base” scheme to active security of the
transformed scheme. More specifically, almost all of these transformations
can be seen as variants of the well-known class of Fujisaki-Okamoto (FO)
transformations [1–4].

The FO transformations are quite well-studied in the literature wherein
they were shown to offer IND-CCA security (e.g., in the works of [5–
8]) – albeit in a heuristic setting called the quantum random oracle model
(QROM) [9]. Roughly speaking, in the QROM, hash functions used by a
cryptographic scheme are idealized as publicly accessible random oracles
where an adversary can make queries in quantum superposition to such
oracles.1 Despite the need for the above heuristic, FO transforms are quite
popular with cryptographic practitioners as they allow the construction of
actively secure PKE schemes that are efficient in practice. However, upon a
close inspection of the variants of FO transforms used by certain important
NIST PQC candidates – such as Kyber [11], the current “winner” of the
standardization process – it turns out that known QROM security results
on standard FO transformations in the literature do not directly apply to
the aforementioned variants. This is due to subtle but significant differences
between the standard FO transforms and the variants used in the NIST
PQC process – especially in terms of provable security in the QROM. Hence,
given the importance placed by NIST on the above PKE candidates, and
the potential widespread deployment of these schemes in the real world,
it is imperative to revisit the FO-style variants and formally analyze their
security properties in the post-quantum setting.

The chosen standards are also envisioned to be widely used for decades
to come. And there is a range of cryptographic applications that have
emerged in recent times where IND-CCA security of the underlying PKE
primitives may not suffice. Hence, it is also important to perform a broader
analysis of the NIST PQC candidates with respect to certain “beyond IND-
CCA” security properties that are required by these emerging applications.
A class of such applications that will be of focus in this thesis is related
to anonymous digital communications where, broadly speaking, identities
of the communicating parties should be hidden from other parties in the
network. The corresponding security properties – namely, anonymity (or key-

1 QROM is a generalization of the so-called random oracle model (ROM) [10] which was introduced
in a pre-quantum setting. In the ROM, an adversary is only given classical access to random
oracles modelling the underlying hash functions. But as pointed out in [9], in a post-quantum
setting, an adversary could evaluate a hash function on a quantum superposition of inputs;
and this is not captured in the ROM. Hence, the QROM became the “de facto” security model
for assessing the post-quantum security of cryptosystems.



1.1 thesis contributions 3

privacy) [12] and robustness [13] – have not been examined in detail for
general post-quantum PKE schemes. This includes the NIST PQC candi-
dates in particular.

Roughly speaking, a PKE scheme is said to be anonymous if a ciphertext
does not leak anything about which public key was used to create it,
thereby hiding the identity of the intended recipient. Anonymous PKE is
a fundamental component of several deployed anonymity systems, such
as anonymous credential systems [14]. The property of robustness for PKE
schemes, on the other hand, was shown to be an essential conjunct of
anonymity in [13]; the robustness property guarantees that it is hard to
produce a ciphertext which decrypts validly under two different secret keys.
But to the best of our knowledge, there have been few works that help us
understand how to build anonymous, robust post-quantum PKE schemes,
or particularly, whether the NIST schemes provide these properties.

Finally, NIST’s PQC standardization process currently only considers
the basic PKE primitive which, in general, could be considered to have
restricted functionalities. This is in contrast to what some of the existing
(pre-quantum) cryptographic algorithms have to offer – e.g., identity-based
encryption and threshold public-key encryption. Focusing on the latter class of
algorithms, roughly speaking, threshold schemes allow secret cryptographic
operations such as decryption to happen in a distributed fashion involving
multiple users, while at the same time, guaranteeing the security of the
overall execution even if a certain fraction of users are compromised. NIST
has in fact initiated separate plans to standardize threshold schemes for (po-
tentially post-quantum) cryptographic primitives. Coming back to NIST’s
PQC standardization process, it turns out that the general paradigm used
by PKE candidates in their respective constructions – i.e., using an FO-style
transform in conjunction with the so-called KEM-DEM2 paradigm [15] – does
not result in threshold schemes that are both secure and efficient. Therefore,
in order to prepare NIST’s threshold cryptography standardization efforts
for the quantum-computing era, there is a need for an alternative paradigm
to construct efficient and post-quantum secure threshold PKE schemes.

1.1 thesis contributions

In this thesis, we study ways to enhance quantum-resistant PKE schemes in
a generic manner – especially in the context of NIST’s PQC standardization

2 The primitive KEM (resp., DEM) stands for “Key (resp., Data) Encapsulation Mechanism”.
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process. There are two important things to note here: namely, our usage of
the words “generic” and “enhance”.

By “generic”, we mean that our focus will be on analysing frameworks
that construct enhanced PKE schemes which are not tied to any specific
hardness assumption – in other words, the frameworks can be instanti-
ated with any such assumption (the above “CPA→CCA” enhancing FO
transforms are examples of such frameworks). The main advantage of such
generic frameworks is that they enable a modular construction of advanced
PKE schemes from simpler primitives. This allows scheme designers to
focus on instantiating the simpler primitives with appropriate hardness
assumptions, which is a much easier task when compared to directly con-
structing advanced schemes from such assumptions.

The word “enhance”, on the other hand, has three distinctive meanings
corresponding to the three key contributions of this thesis detailed be-
low; each of our contributions address an issue identified previously with
regards to NIST’s PQC standardization process.

I) Analysing IND-CCA Security Enhancements of NIST FO Variants (Chapter 3)

As mentioned above, certain important NIST PQC candidates employ vari-
ants of the standard FO transforms for their respective PKE/KEM con-
structions. And as a consequence of these variations, we argue that the
traditional IND-CCA security enhancing properties of the standard FO
transformations – established in the literature in a post-quantum setting
(i.e., QROM) – do not formally extend to these candidates’ FO-style variants.

More concretely, we revisit the generic FO-variants used in Kyber [11],
the currently chosen NIST PQC standard, and FrodoKEM [16], a third-
round NIST PQC alternate candidate which is currently recommended
by the German Federal Office for Information Security (BSI) [17]. We first
identify issues with the initial QROM IND-CCA security claims in the
above schemes’ NIST specification documents; we do so by zooming in
on the subtle differences between their FO-variants and the standard FO
transforms. Then we proceed to re-establish concrete IND-CCA security
of these NIST PQC schemes in the QROM by proving the corresponding
“CPA→CCA” enhancing properties of their respective FO-variants in a
rigorous manner. For FrodoKEM, our proof achieves the same tightness as
the one (incorrectly) claimed in its specification document. For Kyber, we
achieve similar tightness except for an additional term in the IND-CCA
security bounds that has to do with collision-resistance of an underlying
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hash (formal details are presented in Section 3.2). We also discuss ways to
achieve even tighter security proofs for FrodoKEM and Kyber in view of
recent proof techniques introduced in the QROM literature.

It is also worth mentioning that NIST has recently started plans [18,
19] to essentially replace the FO-variant currently used in Kyber with one
of the standard FO transforms. As addressed by a representative of the
Kyber team [20], this is in part because of our arguments on how the
differences between Kyber’s variant of the FO transform and the standard
FO transforms invalidate the initial QROM IND-CCA security claims made
for the scheme in its NIST specification document [11]. In a sense, NIST’s
decision also showcases the real-world impact this thesis has had on the
PQC standardization process.

II) “Beyond IND-CCA” Enhancements: Anonymity and Robustness (Chapters 4, 5)

We then investigate whether the traditional IND-CCA security analysis of
NIST PQC schemes can be enhanced to target the aforementioned properties
of anonymity and robustness. Namely, we first provide a generic modular
theory of anonymity and robustness for PKE schemes built via the KEM-
DEM paradigm, since this paradigm is used by most NIST candidates.
As a part of our analysis, we introduce formal security definitions of
these “beyond IND-CCA” properties for the KEM primitive which, to the
best of our knowledge, have not been considered before in the literature.
The subsequent results of our analysis vary depending on whether the
underlying KEM performs “explicit rejection” (i.e., returns a special error
symbol “⊥” when decapsulating an invalid ciphertext) or “implicit rejection”
(i.e., the KEM decapsulation never returns “⊥” for any ciphertext). On a
high level, we show that explicit rejection KEMs transfer their anonymity
and robustness properties to PKE schemes obtained via the corresponding
KEM-DEM paradigm; whereas implicit rejection KEMs, in general, do not
transfer these properties.

This latter result poses a problem because most NIST PQC candidates for
PKE use an underlying KEM that is implicitly rejecting. However as noted
above, these candidates also use variants of the standard FO transforms for
their respective KEM constructions. In this thesis, we analyse one such stan-
dard implicitly-rejecting FO transformation called FO ̸⊥, as introduced in [4]
(also see Figure 3.2 for a formal description), with respect to its anonymity
and robustness enhancing properties in the QROM. We show that the FO ̸⊥

transform confers these properties not only to the constructed KEM, but
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also to the final KEM-DEM composed PKE scheme. In other words, we
show that KEMs built via the FO ̸⊥ transform can bypass our above negative
result on implicit rejection KEMs being unable to transfer anonymity and
robustness properties in the KEM-DEM paradigm generically.

Finally, we look into the applicability of our above generic analysis of FO ̸⊥-
based KEMs to three specific KEMs related to NIST’s PQC standardization
process: namely, the current standard Kyber [11], the third-round alternate
candidate FrodoKEM [16], and the fourth-round candidate Classic McEliece
(CM) [21] which (in addition to FrodoKEM) is also recommended by the
German federal agency BSI for use. We observe that our generic analysis
cannot be extended to CM because of an inherent lack of robustness in the
scheme. More concretely, we show with respect to PKE schemes obtained
from CM via the standard KEM-DEM paradigm that, for any plaintext
m, it is possible to construct a ciphertext c where c always decrypts to m
under any secret key. In this regard, our work exposes the limitations of
CM as a general-purpose KEM for the wide range of applications that can
be envisioned for NIST PQC candidates. On the bright side, we successfully
adapt our analysis on the anonymity and robustness enhancing properties
of FO ̸⊥ in the QROM to the specific FO-type variant used by FrodoKEM – as
was also the case w.r.t. IND-CCA security – to show that FrodoKEM indeed
results in PKE schemes with the corresponding “beyond IND-CCA” security
properties. We also show a similar positive result for Kyber. Here we adapt
our techniques that were used to prove Kyber’s concrete IND-CCA security
above to also establish its post-quantum anonymity and robustness.

III) Functionality Enhancements: Efficient Threshold Decryption (Chapter 6)

In the last part of this thesis, we seek to enhance the functionality of
quantum-resistant PKE primitives to that of threshold schemes. As high-
lighted above, most PKE candidates in NIST’s PQC standardization process
use the standard KEM-DEM paradigm for their constructions. However in
a threshold setting, if we want to maintain IND-CCA security of the overall
paradigm, we would need to apply a threshold (or, distributed) decryp-
tion procedure to the symmetric DEM component – and “thresholdizing”
symmetric cryptographic primitives is quite expensive, especially for large
input messages. One way around this problem is to leak the DEM key in the
clear after executing distributed decryption of the KEM component, so that
the users can perform decryption of the DEM component using the leaked
key locally. However, we show that this simple attempt to thresholdize the
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KEM-DEM paradigm leads to an insecure scheme, in the IND-CCA sense,
because an adversary can exploit the leaked DEM keys (see Section 6.2 for
more formal details). So in other words, the requirements of (IND-CCA)
security and efficiency seem to be at odds with respect to threshold PKE
schemes derived from the standard KEM-DEM paradigm.

To overcome the above issue, we propose an alternative to the KEM-DEM
framework called “Hybrid” which can be used to generically construct PKE
schemes that have an efficient threshold decryption procedure, while at the
same time, being IND-CCA secure in the post-quantum setting. Notably,
our analysis is in the QROM. On a high level, our Hybrid transform does
leak the DEM key but after performing some checks during the distributed
decryption; in this regard, our approach can be seen as closely related to the
so-called Tag-KEM framework [22]. We then formally prove that these checks
guarantee the above leakage does not affect IND-CCA security of the overall
threshold implementation, specifically in the QROM. We also (briefly) dis-
cuss the potential applicability of our Hybrid framework to certain schemes
in the NIST PQC standardization process, namely the fourth-round candi-
date Classic McEliece [21] and the third-round finalist NTRU [23]. Given
NIST’s recent plans to standardize threshold cryptographic schemes [24],
we hope our generic framework serves as a stepping stone to more efficient
– and post-quantum secure – constructions of threshold PKE schemes.

1.2 publications

The material in this thesis is based on the following publications:

• (Chapters 3, 4, 5) Paul Grubbs, Varun Maram, Kenneth G. Pater-
son: “Anonymous, Robust Post-Quantum Public-Key Encryption”, In
41st Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2022), pages 402-432 [25].

• (Chapters 3, 5) Varun Maram, Keita Xagawa: “Post-Quantum Anonymity
of Kyber”, In 26th IACR International Conference on Practice and Theory
of Public-Key Cryptography (PKC 2023), pages 3-35 [26].

• (Chapter 6) Kelong Cong, Daniele Cozzo, Varun Maram, Nigel P.
Smart: “Gladius: LWR Based Efficient Hybrid Public-Key Encryp-
tion with Distributed Decryption”, In 27th International Conference
on the Theory and Application of Cryptology and Information Security
(ASIACRYPT 2021), pages 125-155 [27].
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During my doctoral studies, I also co-authored the following publications
that are not covered in this thesis.

• Navid Alamati, Varun Maram: “Quantum CCA-Secure PKE, Revis-
ited”, To Appear in 27th IACR International Conference on Practice and
Theory of Public-Key Cryptography (PKC 2024) [28].

• Navid Alamati, Varun Maram, Daniel Masny: “Non-Observable Quan-
tum Random Oracle Model”, In 14th International Conference on Post-
Quantum Cryptography (PQCrypto 2023), pages 417-444 [29].

• Melanie Jauch, Varun Maram: “Quantum Cryptanalysis of OTR and
OPP: Attacks on Confidentiality, and Key-Recovery”, To Appear in
30th International Conference on Selected Areas in Cryptography (SAC
2023) [30].

• Varun Maram, Daniel Masny, Sikhar Patranabis, Srinivasan Raghu-
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Conference on Principles of Distributed Systems (OPODIS 2020), pages
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2
P R E L I M I N A R I E S

2.1 notation

For a finite set S , we write “x ←$ S” to denote that x is sampled uniformly
at random from S ; in general, for arbitrary sampling distributions in S ,
we just write “x ← S” and then describe the corresponding distribution
explicitly when not clear from the context. For a logical statement P, we
define the boolean value [P] to be 1 if P is satisfied and 0 otherwise.

For probabilistic algorithms A, we use “y ← A(x)” to denote the ran-
domized output y following the output distribution of A on input x; we
also sometimes specify the randomness r used in A as “y := A(x; r)” to
denote the deterministic computation of y. We use “AO” to denote that the
algorithm A has access to oracle O; we will also make it clear whether A
has classical or quantum access to O when describing our setting.

2.2 quantum random oracle model

As mentioned above, the quantum random oracle model (QROM) – rein-
troduced by Boneh et. al. [9] in a cryptographic context – is an idealized
model where a hash function is modeled as a publicly and quantumly ac-
cessible random oracle in a formal security analysis of the corresponding
cryptosystem; the QROM can be seen as a post-quantum generalization of
the well-known (classical) ROM [10] wherein the hash oracles only allow
classical access. Following [9], we model the above quantum random oracles
O : {0, 1}n → {0, 1}m as a unitary mapping |x⟩ |y⟩ 7→ |x⟩ |y⊕O(x)⟩, where
x ∈ {0, 1}n and y ∈ {0, 1}m; we refer the reader to [34] for the basics of
quantum computation and information.

We now introduce some folklore lemmas in the QROM which will be
used extensively in the post-quantum security proofs in this thesis. The
following lemma allows one to perfectly simulate a quantum random oracle
in the view of an adversary.

Lemma 1 (Simulating a QRO [35, Theorem 6.1]). Let ΩH be the set of all
functions H : X → Y and Ωf be the set of all 2q-wise independent functions
f : X → Y . Let f ←$ Ωf and H ←$ ΩH. Then the advantage any quantum

9
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algorithm has in distinguishing the oracles f and H when making q quantum
queries is identically zero.

The second lemma intuitively states that a quantum random oracle can
be used as a quantum-accessible pseudo-random function (PRF), even if the
distinguisher is given full access to the quantum random oracle in addition
to the PRF oracle.

Lemma 2 (PRF based on a QRO [5, Lemma 4]). Let ΩH be the set of all
functions H : K ×X → Y and ΩR be the set of all functions R : X → Y . Let
H ←$ ΩH, k←$ K and R←$ ΩR. Define the oracles F0 = H(k, ·) and F1 = R(·).
Consider a quantum algorithm AH,Fi that makes at most q quantum queries to H
and Fi (i ∈ {0, 1}). If (“the PRF key") k is chosen independently from AH,Fi ’s
view, then we have

|Pr[1← AH,F0 ]− Pr[1← AH,F1 ]| ≤ 2q√
|K|

The lemmas below provide a generic reduction from a hiding-style prop-
erty (indistinguishability) to a one-wayness-style property (unpredictability)
in the QROM. They are also popularly referred to as the One-Way To Hiding
(OW2H) lemmas in the literature, originally appearing in [36]. We first state
the original OW2H lemma of [36] and later state a generalized version of
the OW2H lemma from [37]. As will be seen in Chapter 3, different parts of
our security analysis of Kyber use different versions of the OW2H lemma
for the sake of convenience.

Lemma 3 (Original OW2H [36]). Let ΩH be the set of all functions H : X → Y
and let H ←$ ΩH. Consider a quantum algorithm AH that makes at most q
quantum queries to H. Let BH be a quantum algorithm that on input x does the
following: picks i ←$ {1, . . . , q} and y ←$ Y , runs AH(x, y) until (just before)
the i-th query, measures the argument of the query in the computational basis
and outputs the measurement outcome (if A makes less than i queries, B outputs
⊥/∈ X ). Let

P1
A = Pr[1← AH(x, H(x)) | x ←$ X ]

P2
A = Pr[1← AH(x, y) | x ←$ X , y←$ Y ]

PB = Pr[x ← BH(x) | x ←$ X ].

Then, we have |P1
A − P2

A| ≤ 2q
√

PB.
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Lemma 4 (Generalized OW2H [37, Theorem 3]). Let S ⊆ X be a random
subset sampled arbitrarily; similarly, let z be an arbitrarily random bit string. Let
ΩH be the set of all functions H : X → Y , and let the functions G ← ΩH and
H ← ΩH such that G(x) = H(x) for all x /∈ S ; in particular, S , G, H, z may
have arbitrary joint distribution.

Let AO be a quantum algorithm making q quantum queries to O ∈ {G, H}.1
Let BH be a quantum algorithm that on input z does the following: picks i ←$

{1, . . . , q}, runs AH(z) until (just before) the i-th query, measures all query input
registers in the computational basis, and outputs the set T = {t1, . . . , t|T |} of
measurement outcomes. Let

Pleft = Pr[1← AH(z)]

Pright = Pr[1← AG(z)]

Pguess = Pr[S ∩ T ̸= ∅ | T ← BH(z)].

Then, |Pleft − Pright| ≤ 2q
√

Pguess. The same result also holds with BG instead of
BH in the definition of Pguess.

Note that the original OW2H lemma (i.e., Lemma 3) can be seen as
a corollary of Lemma 4 wherein we have H ←$ ΩH , x ←$ X , y ←$ Y ,
S = {x} such that G(x) = y, and z = (x, H(x)). In this case, note that
we have Pleft = P1

A and Pguess = PB when compared to Lemma 3. We
also have Pright = Pr[1 ← AG(x, H(x)) | x ←$ X ] which is the same as
Pr[1← AH(x, y) | x ←$ X , y←$ Y ] (= P2

A) since H(x) and y have the same
uniform distribution over Y .

The following lemma gives a lower bound for a decisional variant of the
so-called generic quantum search problem.

Lemma 5 (Generic Search Problem [38, 39]). Let γ ∈ [0, 1] and Z be a
finite set. Let ΩN be the set of all functions N : Z → {0, 1}. Define the function
N0 ← ΩN as follows: for each z ∈ Z , N0(z) = 1 with probability pz (pz ≤ γ),
and N0(z) = 0 else. Let N1 ← ΩN be the function such that N1(z) = 0 ∀z ∈ Z .

Let AO be a quantum algorithm making q quantum queries to O ∈ {N0, N1}.
Then we have

|Pr[1← AN0 ]− Pr[1← AN1 ]| ≤ 2q
√

γ.

1 Strictly speaking, the generalized OW2H lemma of [37] takes into account the parallel oracle
queries made by AO by having q to be the so-called query depth of AO. In this thesis, we will
not consider parallel queries of AO for the sake of simplicity and denote q to be the query
number of AO. But our subsequent security proofs can be modified to also consider parallel
oracle queries in a straightforward way.
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The following lemma describes the collision-resistance of quantum ran-
dom oracles.

Lemma 6 (Collision-resistance of QROs [40, Theorem 3.1]). There is a uni-
versal constant C (< 648) such that the following holds: Let ΩH be the set of all
functions H : X → Y and let H ←$ ΩH. For any quantum algorithm AH making
q quantum queries to H, we have

Pr[H(x0) = H(x1) ∧ x0 ̸= x1 | (x0, x1)← AH ] ≤ C(q + 1)3

|Y| .

2.3 cryptographic primitives

In this section, we define some standard cryptographic primitives which
will be used in the thesis. Other primitives and/or their corresponding
security properties that are only relevant in certain chapters will be defined
in said chapters.

2.3.1 Public-Key Encryption

Definition 1 (Public-Key Encryption (PKE) Scheme). A PKE scheme PKE,
defined over message space M, ciphertext space C (and encryption randomness
space R), consists of the following triple of efficient algorithms (KGen,Enc,Dec):

• (pk, sk) ← KGen: a probabilistic key-generation algorithm that outputs
a pair of keys (pk, sk). pk and sk are called the public/encryption key and
private/decryption key, respectively.

• c ← Enc(pk, m): a probabilistic encryption algorithm that takes as input
encryption key pk, message m ∈ M and randomness r ←$R, and outputs
ciphertext c ∈ C; we also denote this operation as “c := Enc(pk, m; r)”.

• m/⊥ := Dec(sk, c): a deterministic decryption algorithm that takes as
input decryption key sk and ciphertext c, and outputs message m ∈ M or a
rejection symbol ⊥ ̸∈ M.

Definition 2 (Correctness of PKE [4]). We say that PKE = (KGen,Enc,Dec),
with message spaceM, is δ-correct if

E

[
max
m∈M

Pr[Dec(sk, c) ̸= m | c← Enc(pk, m)]

]
≤ δ,

where the expectation is taken over (pk, sk)← KGen. Furthermore, if δ = 0, then
we just say that PKE is perfectly correct.
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OW-CPAAPKE
(pk, sk)← KGen

m∗ ←$M
c∗ ← Enc(pk, m∗)

m′ ← A(pk, c∗)

return [m′ = m]

IND-CCAAPKE
(pk, sk)← KGen

b←$ {0, 1}
(m0, m1, st)← ADec⊥ (pk)

c∗ ← Enc(pk, mb)

b′ ← ADecc∗ (c∗, st)

return [b′ = b]

Deca(c)

if c = a then return ⊥
m := Dec(sk, c)

return m

Figure 2.1: Security games for PKE schemes. In the IND-CCA security game,
m0 and m1 are messages inM of equal length; also st is some state
information maintained by the adversary A.

Definition 3 (γ-Spreadness of PKE). We say that PKE = (KGen,Enc,Dec),
defined over message space M, ciphertext space C and encryption randomness
spaceR, is γ-spread if for every key-pair (pk, sk), message m ∈ M and ciphertext
c ∈ C, we have

Pr
r←$R

[c = Enc(pk, m; r)] ≤ 2−γ.

Definition 4 (Rigidity of PKE [41]). We say that a deterministic PKE scheme
PKE = (KGen,Enc,Dec), defined over ciphertext space C, is rigid if for every
key-pair (pk, sk) and ciphertext c ∈ C, we have that either Dec(sk, c) = ⊥ or
Enc(pk,Dec(sk, c)) = c.

To define security for all cryptographic primitives – including PKE
schemes – in this thesis, we will be using the code-based game-playing
framework of Bellare and Rogaway [42]. We will also be using the concrete
security paradigm wherein we explicitly measure the success probability
and resource usage of adversaries in such games; in particular, we will not
relate the above quantities of interest to a so-called security parameter, in
contrast to the asymptotic security paradigm. Finally, we will be working
with the so-called “game-hopping” technique, as analyzed by Shoup [43], to
formally prove security of cryptographic primitives in the above framework.

We now define some basic security notions for PKE schemes: namely,
One-Wayness under Chosen-Plaintext Attacks (OW-CPA), and Indistin-
guishability under Chosen-Plaintext Attacks (IND-CPA) and under Chosen-
Ciphertext Attacks (IND-CCA).

Definition 5 (OW-CPA, IND-CPA/-CCA Security of PKE). Given a PKE
scheme PKE = (KGen,Enc,Dec) with message space M, we define the game
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w.r.t. its OW-CPA security in Figure 2.1 and the OW-CPA advantage measure
for adversary A against PKE as

AdvOW-CPA
PKE (A) = Pr[OW-CPAAPKE = 1].

(In general, “GAP = b” denotes the security game G, “played” by an adversary A
against the cryptographic primitive P, outputting the bit b ∈ {0, 1}.)

Similarly, we define the game w.r.t. its IND-CCA security in Figure 2.1 and the
IND-CCA advantage measure for adversary A against PKE as

AdvIND-CCA
PKE (A) =

∣∣∣∣Pr[IND-CCAAPKE = 1]− 1
2

∣∣∣∣ .

If we remove the adversaries’ access to decryption oracles in the IND-CCA security
game, we obtain the corresponding game for IND-CPA security; the IND-CPA
advantage measure is defined in the same fashion as that of IND-CCA.

It is also well-known that IND-CPA security of a PKE scheme with a
sufficiently large message space implies its OW-CPA security [4, 44]. More
formally:

Lemma 7 ([4, Lemma 2.3]). Let PKE = (KGen,Enc,Dec) be a PKE scheme
with message spaceM. For any OW-CPA adversary A against PKE, there exists
an IND-CPA adversary B against PKE with the same running time as that of A
such that

AdvOW-CPA
PKE (A) ≤ AdvIND-CPA

PKE (B) + 1
|M| .

For PKE schemes – and other primitives in this thesis – whose security
analysis in the post-quantum setting relies on modeling their component
hash functions as quantum random oracles, the corresponding security
games are extended in a straightforward manner in the QROM by addi-
tionally giving the adversaries quantum access to the hash oracles; however,
the adversaries still have classical access to the remaining oracles, such as
the decryption oracle in the IND-CCA security game, since they represent
operations performed on users’ devices that are assumed to be classical
(i.e., non-quantum) in the scenario of post-quantum cryptography.2

Following [4, 5], we also make the convention that the number qO of
queries made by an adversary A to an oracle O counts the total number of

2 This is in contrast to the so-called “quantum cryptography” scenario where the users’ devices
can be quantum, and hence for example, the adversaries can have quantum access to the
decryption oracle [45]. However, we will not consider this setting in the thesis.
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times O is executed in the corresponding security game – i.e., the number
of A’s explicit queries to O plus the number of implicit queries to O made
during the execution of the game.

Now a standard way to construct efficient PKE schemes in practice is to
compose two other primitives – namely, key-encapsulation mechanism (KEM)
and data-encapsulation mechanism (DEM) – in a way known as the KEM-DEM
paradigm. We first formally define the aforementioned primitives and then
describe the paradigm in more detail.

2.3.2 Key Encapsulation Mechanism

Definition 6 (Key Encapsulation Mechanism (KEM)). A KEM scheme KEM,
defined over encapsulated key space K and ciphertext space C, consists of the
following triple of efficient algorithms (KGen,Encap,Decap):

• (pk, sk)← KGen: a probabilistic key-generation algorithm that outputs a
pair of keys (pk, sk). pk and sk are called the public/encapsulation key and
private/decapsulation key, respectively.

• (c, k)← Encap(pk): a probabilistic encapsulation algorithm that takes as
input encapsulation key pk, and outputs ciphertext c ∈ C and its correspond-
ing encapsulated key k ∈ K.

• k/⊥ := Decap(sk, c): a deterministic decapsulation algorithm that takes
as input decapsulation key sk and ciphertext c, and outputs key k ∈ K or a
rejection symbol ⊥ ̸∈ K.

Definition 7 (Correctness of KEM). We say that KEM = (KGen,Encap,Decap)
is δ-correct if

Pr[Decap(sk, c) ̸= k | (pk, sk)← KGen, (c, k)← Encap(pk)] ≤ δ.

In particular, we say that KEM is perfectly correct if δ = 0.

Definition 8 (IND-CCA Security of KEM). Given a KEM scheme KEM =
(KGen,Encap,Decap) with K as its encapsulated key space, we define the game
w.r.t. its IND-CCA security in Figure 2.2 and the IND-CCA advantage mea-
sure for adversary A against KEM as

AdvIND-CCA
KEM (A) =

∣∣∣∣Pr[IND-CCAAKEM = 1]− 1
2

∣∣∣∣ .
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IND-CCAAKEM
(pk, sk)← KGen

b←$ {0, 1}
(c∗, k∗0)← Encap(pk)

k∗1 ←$ K
b′ ← ADecapsc∗ (pk, c∗, k∗b)

return [b′ = b]

Decapsa(c)

if c = a then return ⊥
k := Decap(sk, c)

return k

Figure 2.2: IND-CCA security game for KEMs.

2.3.3 Data Encapsulation Mechanism

Definition 9 (Data Encapsulation Mechanism (DEM)). A DEM scheme DEM,
defined over key space K, message spaceM and ciphertext space C, consists of the
following triple of efficient algorithms (KGen,Enc,Dec):

• k← KGen: a probabilistic key-generation algorithm that outputs a single
key k ∈ K. This key k is used for both encryption and decryption, and hence
is often referred to as “symmetric key” in the literature; this is in contrast
to the above “asymmetric key” primitives of PKE and KEM.

• c← Enc(k, m): a probabilistic encryption algorithm that takes as input key
k and message m ∈ M, and outputs ciphertext c ∈ C.

• m/⊥ := Dec(k, c): a deterministic decryption algorithm that takes as
input key k and ciphertext c, and outputs message m ∈ M or a rejection
symbol ⊥ ̸∈ M.

Definition 10 (Correctness of DEM). We say that DEM = (KGen,Enc,Dec),
with message spaceM, is perfectly correct if for any message m ∈ M, we have

Pr[Dec(k, c) = m | k← KGen, c← Enc(k, m)] = 1.

Definition 11 (One-time IND-CCA Security of DEM). Given a DEM scheme
DEM = (KGen,Enc,Dec) with message spaceM, we define the game w.r.t. its one-
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otIND-CCAADEM

k← KGen

b←$ {0, 1}
(m0, m1, st)← ADec⊥

c∗ ← Enc(k, mb)

b′ ← ADecc∗ (c∗, st)

return [b′ = b]

Deca(c)

if c = a then return ⊥
m := Dec(k, c)

return m

Figure 2.3: One-time IND-CCA security game for DEMs. Here m0 and m1 are
messages in M of equal length; also st is some state information
maintained by the adversary A.

time3 IND-CCA (otIND-CCA) security in Figure 2.3 and the otIND-CCA
advantage measure for adversary A against DEM as

AdvotIND-CCA
DEM (A) =

∣∣∣∣Pr[otIND-CCAADEM = 1]− 1
2

∣∣∣∣ .

If we remove the adversaries’ access to decryption oracles in the otIND-CCA
security game, we obtain the corresponding game for one-time IND-CPA security;
the otIND-CPA advantage measure is defined in the same fashion as that of
otIND-CCA.

the kem-dem paradigm . As mentioned above, composing an asym-
metric KEM and a symmetric DEM is a standard way to construct PKE;
the resulting schemes are often called “hybrid” PKE. Given a KEM scheme
KEM = (KGenkem,Encap,Decap) and a DEM scheme DEM = (KGendem,Enc,Dec),
the hybrid PKE scheme PKEhy = (KGenhy,Enchy,Dechy) resulting from
their composition according to the KEM-DEM paradigm is described in
Figure 2.4. Moreover, it is well-known that if KEM is IND-CCA secure
and DEM is otIND-CCA secure, then the resulting PKEhy is IND-CCA
secure [15]. More formally, we have the following:

Lemma 8. Let KEM = (KGenkem,Encap,Decap) be a KEM scheme and DEM =
(KGendem,Enc,Dec) be a DEM scheme, and PKEhy = (KGenhy,Enchy,Dechy)

3 The term “one-time” comes from the fact that in the security game (see Fig. 2.3), the adversary
A is allowed to ask for the encryption of a pair of messages (m0, m1) only once. Note that A
cannot locally compute encryptions of arbitrary messages since the encryption key k is secret;
this is in contrast to the IND-CCA security game for PKE (see Fig. 2.1) where the encryption
key pk is known.
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KGenhy

(pk, sk)← KGenkem

return (pk, sk)

Enchy(pk, m)

(c0, k)← Encap(pk)

c1 ← Enc(k, m)

c := (c0, c1)

return c

Dechy(sk, c)

Parse c = (c0, c1)

k := Decap(sk, c0)

if k = ⊥, return ⊥
m := Dec(k, c1)

return m

Figure 2.4: Hybrid PKE scheme PKEhy = (KGenhy,Enchy,Dechy) built via
the composition of KEM = (KGenkem,Encap,Decap) and DEM =
(KGendem,Enc,Dec) using the KEM-DEM paradigm.

be the hybrid PKE scheme resulting from the composition of KEM and DEM using
the KEM-DEM paradigm (see Fig. 2.4). Then for any IND-CCA adversary Ahy

against PKEhy, there exist adversaries Akem and Adem targeting the IND-CCA
security of KEM and otIND-CCA security of DEM respectively such that

AdvIND-CCA
PKEhy (Ahy) ≤ 2 ·AdvIND-CCA

KEM (Akem) + AdvotIND-CCA
DEM (Adem).

Moreover,Akem andAdem run in the same time asAhy. IfAhy makes q decryption
oracle queries, then Akem makes at-most q decapsulation queries and Adem makes
at-most q decryption queries.

authenticated encryption. In the KEM-DEM paradigm above,
note that using a one-time IND-CCA secure DEM is sufficient. However
in practice, we use DEMs satisfying a stronger notion of security called
(one-time) authenticated encryption (AE). To understand this notion, we first
need to define the notion of ciphertext integrity (INT-CTXT security).

Definition 12 (Ciphertext integrity of DEM). Given a DEM scheme DEM =
(KGen,Enc,Dec), we define the game w.r.t. its INT-CTXT security in Figure 2.5
and the INT-CTXT advantage measure for adversary A against DEM as

AdvINT-CTXT
DEM (A) = Pr[INT-CTXTADEM = 1].

If adversaries are restricted to making at-most a single query to the encryption
oracle in the above security game (i.e., |L| ≤ 1), we obtain the corresponding game
for one-time INT-CTXT security; the otINT-CTXT advantage measure is defined
in the same fashion as that of INT-CTXT security.
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INT-CTXTADEM

k← KGen

L := ϕ

win := 0

AEnc,Dec

return win

Enc(m)

c← Enc(k, m)

L := L ∪ {c}
return c

Dec(c)

m := Dec(k, c)

if m ̸= ⊥∧ c /∈ L then

win := 1

return win

Figure 2.5: Security game for INT-CTXT security of DEMs.

Now a DEM is said to offer (one-time) AE security if it is (one-time)
IND-CPA secure4 and provides (one-time) INT-CTXT security. It is also
well-known that (one-time) AE security of a DEM implies its (one-time)
IND-CCA security (hence we often use one-time AE secure DEMs in the
KEM-DEM composition). Restricting our focus to one-time security in
context of the KEM-DEM paradigm, we have the following formal lemma:

Lemma 9 ([46, Theorem 9.1], adapted). Let DEM = (KGen,Enc,Dec) be a
DEM scheme. For any one-time IND-CCA adversary A against DEM, there exists
a one-time IND-CPA adversary B and a one-time INT-CTXT adversary B′ against
DEM, both with the same running time as that of A, such that

AdvotIND-CCA
DEM (A) ≤ AdvotIND-CPA

DEM (B) + 2 ·AdvotINT-CTXT
DEM (B′).

2.3.4 Message Authentication Code

Definition 13 (Message Authentication Code (MAC)). A MAC scheme MAC,
defined over key space K, message space M and tag space T , consists of the
following triple of efficient algorithms (KGen,Tag,Vf):

• k← KGen: a probabilistic key-generation algorithm that outputs a single
key k ∈ K.

4 In the notion of (plain) IND-CPA security, adversaries can ask for encryptions of multiple
pairs of messages (m0, m1) of equal length, in contrast to one-time IND-CPA security, before
outputting the bit b′ – while still having no access to the decryption oracle (cf. Definition 11).
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SUF-CMAAMAC

k← KGen

L := ϕ

win := 0

ATag,Vf

return win

Tag(m)

t← Tag(k, m)

L := L ∪ {(m, t)}
return t

Vf(m, t)

if Vf(k, m, t) = 1∧ (m, t) /∈ L then

win := 1

return win

Figure 2.6: SUF-CMA security game for MACs.

• t← Tag(k, m): a (potentially) probabilistic tag algorithm that takes as input
key k and message m ∈ M, and outputs a tag t ∈ T .

• b := Vf(k, m, t): a deterministic verification algorithm that takes as input
key k, message m, and tag t, and outputs a bit b ∈ {0, 1} where b = 0 and
b = 1 are synonymous with “reject” and “accept” respectively.

Definition 14 (Correctness of MAC). We say that MAC = (KGen,Tag,Vf),
with message spaceM, is perfectly correct if for any message m ∈ M, we have

Pr[Vf(k, m, t) = 1 | k← KGen, t← Tag(k, m)] = 1.

We now define a standard notion of security for MACs: namely, Strong
Unforgeability under Chosen-Message Attacks (SUF-CMA security).

Definition 15 (SUF-CMA Security of MAC). Given a MAC scheme MAC =
(KGen,Tag,Vf), we define the game w.r.t. its SUF-CMA security in Figure 2.6
and the SUF-CMA advantage measure for adversary A against MAC as

AdvSUF-CMA
MAC (A) = Pr[SUF-CMAAMAC = 1].

encrypt-then-mac . Here we describe a standard way to construct AE
schemes by combining an IND-CPA secure5 symmetric encryption scheme6

5 See Footnote 4 of this chapter.
6 Symmetric encryption schemes are syntactically equivalent to DEMs. However, it is a conven-

tion in the literature to refer to AE-secure (or, IND-CCA secure) symmetric key encryption,
at-least in the context of KEM-DEM paradigm, as “DEMs”. Hence, we will be referring to the
IND-CPA secure building blocks used to construct AE-secure DEMs via the EtM transform as
just “symmetric encryption schemes”.
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KGendem

k0 ← KGense

k1 ← KGenmac

return (k0, k1)

Encdem((k0, k1), m)

c← Enc(k0, m)

t← Tag(k1, c)

return (c, t)

Decdem((k0, k1), (c, t))

if Vf(k1, c, t) = 0, return ⊥
m := Dec(k0, c)

return m

Figure 2.7: DEM DEM = (KGendem,Encdem,Decdem) built via the composition
of SE = (KGense,Enc,Dec) and MAC = (KGenmac,Tag,Vf) using the
EtM transform.

and a SUF-CMA secure MAC via so-called Encrypt-then-Mac (EtM) trans-
form. Given a symmetric encryption scheme SE = (KGense,Enc,Dec) and a
MAC MAC = (KGenmac,Tag,Vf), the DEM DEM = (KGendem,Encdem,Decdem)
obtained by their composition according to the EtM transform is described
in Figure 2.7. The following lemma shows the AE-security of such DEMs.

Lemma 10 ([46, Theorem 9.2]). Let SE = (KGense,Enc,Dec) be a symmet-
ric encryption scheme and MAC = (KGenmac,Tag,Vf) be a MAC scheme, and
DEM = (KGendem,Encdem,Decdem) be the DEM resulting from the composition
of SE and MAC using the EtM transform (see Fig. 2.7). Then:

1. For any INT-CTXT adversary Adem against DEM, there exists an SUF-
CMA adversary Amac with the same running time as that of Adem such
that

AdvINT-CTXT
DEM (Adem) ≤ AdvSUF-CMA

MAC (Amac).

2. For any IND-CPA adversary Adem against DEM, there exists an IND-CPA
adversary Ase with the same running time as that of Adem such that

AdvIND-CPA
DEM (Adem) ≤ AdvIND-CPA

SE (Ase).





3
I N D - C C A S E C U R I T Y E N H A N C E M E N T S , R E V I S I T E D

One of the most well-known, and well-used, enhancements for practical
public-key encryption schemes in the post-quantum setting – at-least in the
context of NIST’s post-quantum cryptography (PQC) standardization pro-
cess – is the so-called “Fujisaki-Okamoto (FO) transformation” [1, 2]. Roughly
speaking, the FO transformation generically amplifies the passive security
(i.e., OW-/IND-CPA security) of PKE schemes to active security (i.e., IND-
CCA security) – albeit in the heuristical random oracle model (ROM) [10].
Subsequently, some “modern” variants of the FO transformation were pro-
posed in the literature [3, 4] which constructed IND-CCA secure KEMs,
instead of PKE schemes, since the former primitive is more versatile in
terms of applications – e.g., building authenticated key exchange, PKE
schemes via the “KEM-DEM paradigm” [15] (see Section 2.3 above), etc.

In this chapter, we will consider certain modern FO variants in [4]:
namely, FO ̸⊥m ,FO⊥m ,FO ̸⊥ and FO⊥, as described in Figures 3.1 and 3.2. The
main difference between FO ̸⊥m and FO⊥m – similarly, between FO ̸⊥ and FO⊥ –
is that in the former, the decapsulation algorithm never outputs ⊥ when
rejecting invalid ciphertexts, as opposed to the latter (see “Decap(sk′, c)” in
Figs. 3.1 and 3.2). In this context, the FO ̸⊥m and FO ̸⊥ transforms are said to
be implicitly-rejecting, and FO⊥m and FO⊥ are said to be explicitly-rejecting.

It was formally proven in [3, 4] that the above four standard FO trans-
forms offer IND-CCA security in the (classical) ROM. Moving to the post-
quantum setting, it was initially shown in the works of [5, 6] that the
implicitly-rejecting FO ̸⊥m and FO ̸⊥ transforms do achieve IND-CCA security
in the QROM. However, these – and related – works could not establish
post-quantum IND-CCA security for the explictly-rejecting FO⊥m and FO⊥

without modifying the underlying transform; e.g., [4, 47] provide QROM
IND-CCA security proofs for modified versions of FO⊥m and FO⊥ which
include an extra “key confirmation” hash in the ciphertext. (A detailed
discussion on state-of-the-art provable IND-CCA security results for the
explicitly-rejecting and implicitly-rejecting FO transforms in the QROM is
provided in Subsection 3.2.2 below.)

Shifting our focus to NIST’s PQC standardization process, most final-
round KEM candidates employed variants of the standard implicitly-rejecting

23
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KGen′

1 : (pk, sk)← KGen

2 : s← ⊥

3 : s←$M
4 : sk′ ← (sk, s)

5 : return (pk, sk′)

Encap(pk)

1 : m←$M
2 : r ← Gr(m)

3 : c← Enc(pk, m; r)

4 : k← Gk(m)

5 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ ← Dec(sk, c)

3 : r′ ← Gr(m′)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return Gk(m
′)

7 : else return Gk(s, c)

8 : else return ⊥

Figure 3.1: The KEMs FO⊥m [PKE, Gr, Gk] and FO ̸⊥m [PKE, Gr, Gk] . For notational

simplicity, we set s ← ⊥ for FO⊥m . Here M is the message space of
PKE = (KGen,Enc,Dec) and Gr, Gk are hash functions with appropri-
ate domain and co-domain.

KGen′

1 : (pk, sk)← KGen

2 : s← ⊥

3 : s←$M
4 : sk′ ← (sk, s)

5 : return (pk, sk′)

Encap(pk)

1 : m←$M
2 : r ← Gr(m)

3 : c← Enc(pk, m; r)

4 : k← Gk(m, c)

5 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, s)

2 : m′ ← Dec(sk, c)

3 : r′ ← Gr(m′)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return Gk(m
′, c)

7 : else return Gk(s, c)

8 : else return ⊥

Figure 3.2: The KEMs FO⊥[PKE, Gr, Gk] and FO ̸⊥[PKE, Gr, Gk] . For notational

simplicity, we set s← ⊥ for FO⊥. The descriptions of PKE,M, and
hashes Gr, Gk are the same as that in Figure 3.1.
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FO ̸⊥m and FO ̸⊥ transforms, given their provable IND-CCA security guaran-
tees in the QROM; such candidates also cite these results in the literature
as-they-are to claim post-quantum IND-CCA security of their respective
KEMs. However as will be argued in the following sections, some of these
candidates use FO-variants which differ significantly from FO ̸⊥m and FO ̸⊥,
thereby invalidating a direct application of QROM proof techniques used
to analyze the standard transforms to establish IND-CCA security of the
NIST PQC schemes.

More specifically, we will revisit the FO-variants used in two important
NIST PQC candidates – namely Kyber [11], which is the current “winner” of
the NIST PQC standardization process [48], and FrodoKEM [16], which was
a final-round NIST PQC alternate candidate and is currently recommended
by the German Federal Office for Information Security (BSI) [17] – and their
corresponding IND-CCA security claims in the QROM. After identifying
issues with their initial security claims, we will proceed to (re-)establish
concrete IND-CCA security of these NIST PQC schemes in the QROM via
tailor-made proofs that account for variations between their FO-variants
and the standard (implicitly-rejecting) FO transforms. Our post-quantum
security analyses of FrodoKEM and Kyber are presented in Sections 3.1
and 3.2 respectively.

3.1 ind-cca security of frodokem in the qrom

In this section, we analyze the concrete IND-CCA security of FrodoKEM
in the QROM. First we describe the scheme, specifically the variant of FO
transform used by it, in more detail in Subsection 3.1.1. In Subsection 3.1.2,
we discuss problems in the initial QROM IND-CCA security claims for
FrodoKEM in its NIST PQC specification document [16], and then provide
a high-level overview of our new security proof which (re-)establishes IND-
CCA security of FrodoKEM in the QROM with the same concrete bounds as
claimed in the specification document [16, Theorem 5.8]; formal details of
our QROM proof follow in Subsection 3.1.3. Finally in Subsection 3.1.4, we
discuss some relevant proof techniques in the QROM literature which can
be used to potentially obtain even tighter security bounds for FrodoKEM.

3.1.1 Specification of FrodoKEM

FrodoKEM is a lattice-based KEM which relies on hardness of the well-
known learning-with-errors (LWE) problem [49] for its post-quantum security
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KGen′

1 : (pk, sk)← KGen

2 : s←$ {0, 1}256

3 : pk′ ← (pk, H(pk))

4 : sk′ ← (sk, pk′, s)

5 : return (pk, sk′)

Encap(pk)

1 : m←$ {0, 1}256

2 : h← H(pk)

3 : (k, r)← G(m, h)

4 : c← Enc(pk, m; r)

5 : k← H′(k, c)

6 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′)← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return H′(k
′
, c)

7 : else return H′(s, c)

Figure 3.3: The FOfrodo transform used in FrodoKEM. Here we have FrodoPKE =
(KGen,Enc,Dec) and FrodoKEM = (KGen′,Encap,Decap); also we
have hash functions H, H′ with 256-bit outputs and function G with
512-bit outputs.

claims. The KEM is constructed by applying an FO-type transform, which
we refer to as FOfrodo, on a base PKE scheme called “FrodoPKE” (see [16]
for a detailed specification); the FOfrodo transform is described in detail in
Figure 3.3.

Note that in our description of FOfrodo, we are technically using pa-
rameters of FrodoKEM targeting “Level 5” security as specified by NIST.
However, our subsequent IND-CCA security analysis of FrodoKEM in the
QROM can be extended in a straightforward fashion to account for other
parameter sets as well.

3.1.2 Technical Overview

In FrodoKEM’s NIST PQC specification document, specifically in [16, Sec-
tion 5.1.2], it was claimed that prior QROM IND-CCA security results
established for the standard FO ̸⊥ transform (see Fig. 3.2) in the literature –
particularly, the results of Jiang et al. [5] – also apply to the FOfrodo trans-
form used by the scheme in a similar fashion; in fact, FOfrodo is also referred
to as “FO ̸⊥

′
” in [16]. However, we argue that the specific proof techniques

used by Jiang et al. [5], for example, to obtain concrete IND-CCA security
bounds for FO ̸⊥ in the QROM do not directly apply to FrodoKEM’s variant
of the FO transform – this is because of some significant differences between
FOfrodo and the standard FO ̸⊥ transforms.
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Namely, an important trick used in [5] for the security proofs of FO ̸⊥

is to replace the computation of the key “k ← H′(m, c)”1 with “k ←
H′′(g(m))(= H′′(c))” for function g(·) = Enc(pk, · ; Gr(·)) and a secret
random function H′′(·); note that in this case, we simply have Decap(sk, c) =
H′′(c) leading to an “efficient” simulation of the decapsulation oracle
without using the secret key sk. To justify this replacement, the authors
of [5] then argue about the injectivity of g(·), relying on the correctness of
the underlying PKE scheme to establish this.

But in FrodoKEM, keys are computed as “k← H′(k, c)” (see “Encap(pk)”
in Fig. 3.3) where the “pre-key” k is derived as a hash of the message m
(to be specific, (k, r)← G(m, H(pk))). So there is an extra layer of hashing
between m and the computation of k. Hence, to use a similar trick as [5],
we would require some additional injectivity arguments. Thus, strictly
speaking, the proof techniques in [5] do not directly apply to FrodoKEM.

Nevertheless, we are able to overcome the above barrier by adapting
the analysis of FO ̸⊥ in [5] to obtain an explicit IND-CCA security proof
for FrodoKEM in the QROM, with the same tightness as claimed in the
specification document [16, Theorem 5.8]. The formal proof can be found in
Subsection 3.1.3 that follows. But before that, we give a high-level overview
of our approach below.

Note that we can replace the step “(k, r)← G(m, H(pk))” in FrodoKEM’s
encapsulation (Lines 2 and 3 in “Encap(pk)”, Fig. 3.3) by “k← Gk(m)” and
“r ← Gr(m)” for two fresh random oracles Gk, Gr : {0, 1}256 → {0, 1}256

(similar to the description of FO ̸⊥ transform in Fig. 3.2). Now our key
observation is that the extra layer of hashing “Gk(·)” between m and k is
actually length-preserving, i.e., the hash function has the same domain and
range. So following [4, 50], we can replace the random oracle Gk(·) with
a random polynomial of degree 2qG − 1 over a finite field representation of
{0, 1}256 (i.e., a 2qG-wise independent function); here qG is the number of
queries made to oracle G in the IND-CCA security reduction for FrodoKEM.
Because of Lemma 1 in Section 2.2, this change is perfectly indistinguishable
to an adversary making at most qG queries to Gk. This will allow us to
recover m from a corresponding pre-key value k by computing roots of
the polynomial Gk(x)− k. Hence we can invert this “nested” hashing of m
in order to apply the trick of Jiang et al. [5] above. Namely, we can now
replace the key derivation “k← H′(k, c)” with “k← H′′(g(m))(= H′′(c))”

1 Note that in Line 4 of “Encap(pk)”, Figure 3.2, we have keys to be derived as “k← Gk(m, c)”.
However for a better comparison of the FO ̸⊥ and FOfrodo transforms, we are renaming “k” to
“k” and “Gk” to “H′” in the former transform so as to make the notation consistent with that
of the latter transform.
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for function g(·) = Enc(pk, · ; Gr(·)), where in addition, m is a root of the
polynomial Gk(x)− k.

3.1.3 Security Analysis

We now formally prove IND-CCA security of the scheme FrodoKEM =
FOfrodo[FrodoPKE, G, H, H′] (see Figure 3.3) in the QROM with the follow-
ing concrete bounds:

Theorem 1. Given the base scheme FrodoPKE = (KGen,Enc,Dec) is δ-correct,
for any IND-CCA adversary A against FrodoKEM = (KGen′,Encap,Decap)
issuing at most qG and qH′ queries to the quantum random oracles G and H′

respectively, there exists an IND-CPA adversary B against FrodoPKE such that

AdvIND-CCA
FrodoKEM(A) ≤ 2(qG + qH′)

√
AdvIND-CPA

FrodoPKE(B) +
1

2256 +
2qH′

2128 + 4qG
√

δ

and the running time of B is that of A.

The proof that follows is structurally similar to that of [5, Theorem 1].
But the key component of this proof that overcomes the barrier described
in Subsection 3.1.2 above is encapsulated in the “G5 → G8” game-hops.

Proof. Denote ΩG2 , ΩG, ΩH and ΩH′ to be the set of all functions G2 :
{0, 1}512 → {0, 1}512, G : {0, 1}256 → {0, 1}256, H : {0, 1}256∪C → {0, 1}256

and H′ : C → {0, 1}256 respectively, where C is the ciphertext space of
FrodoPKE/FrodoKEM.

Let A be an adversary in the IND-CCA game for FrodoKEM issuing
at most qG and qH′ quantum queries to the random oracles G and H′

respectively. Consider the sequence of games G0 − G11 described in Fig. 3.4.
Game G0: The game G0 is exactly the IND-CCA game for FrodoKEM.

Hence, ∣∣∣Pr[G0 = 1]− 1
2

∣∣∣ = AdvIND-CCA
FrodoKEM(A).

Game G1: In game G1, we modify the decapsulation oracle Decapsc∗

such that Hrej(c) is returned instead of H′(s, c) for an invalid ciphertext
c, where the random oracle Hrej is not directly accessible to A. Here we
can use Lemma 2 w.r.t. the pseudorandomness of H′(s, ·), with “PRF key”
s←$ {0, 1}256, to obtain the following via a straightforward reduction:

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2qH′√
2256

.
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Games G0 − G11

1 : (pk, sk′)← KGen′

2 : G2 ←$ ΩG2 ; Gr ←$ ΩG

3 : Ggood
r ← ΩG // Sampling distribution

// described in description of G4 below.

4 : Gr := Ggood
r // G4 −G8

5 : Gk ←$ ΩG // G0 −G4

6 : Gk ←$ Ωpoly // G5 −G11

7 : H2 ←$ ΩH; Hrej ←$ ΩH′

8 : H3 ←$ ΩG; Hacc ←$ ΩH′

9 : b←$ {0, 1}
10 : m∗ ←$ {0, 1}256

11 : (k
∗
, r∗)← G(m∗, H(pk)) // G0 −G2

12 : r∗ ← Gr(m∗) // G3 −G9

13 : r∗ ←$ {0, 1}256 // G10 −G11

14 : k
∗ ← Gk(m

∗) // G3 −G7

15 : c∗ ← Enc(pk, m∗; r∗)

16 : k∗0 ← H′(k
∗
, c∗) // G0 −G7

17 : k∗0 ← H3(m∗) // G8 −G9

18 : k∗0 ←$ {0, 1}256 // G10 −G11

19 : k∗1 ←$ {0, 1}256

20 : inp← (pk, (c∗, k∗b))

21 : i←$ {1, . . . , qG + qH′} // G11

22 : run AG,H′ ,Decapsc∗ (inp) until

i-th query to Gr × H3 // G11

23 : measure the i-th query and let the

outcome be m′ // G11

24 : return [m′ = m∗] // G11

25 : b′ ← AG,H′ ,Decapsc∗ (inp)

26 : return [b′ = b]

G(m, h)

1 : (k, r)← G2(m, h)

2 : if h = H(pk) then // G2 −G11

3 : r ← Gr(m) // G2 −G11

4 : k← Gk(m) // G2 −G11

5 : return (k, r)

H′(k, c)

1 : return H2(k, c) // G0 −G5

2 : Compute set of roots S

of polynomial Gk(x)− k

3 : if ∃m′ ∈ S s.t.

Enc(pk, m′; Gr(m′)) = c

4 : if c = c∗ then // G8 −G11

5 : return H3(m′) // G8 −G11

6 : return Hacc(c)

7 : return H2(k, c)

Decapsa(c)

1 : if c = a then return ⊥
2 : return Hacc(c) // G7 −G11

3 : Parse sk′ = (sk, pk, h, s)

4 : m′ = Dec(sk, c)

5 : (k
′
, r′)← G(m′, h) // G0 −G2

6 : r′ ← Gr(m′) // G3 −G6

7 : k
′ ← Gk(m

′) // G3 −G6

8 : if Enc(pk, m′; r′) = c then

9 : return H′(k
′
, c)

10 : else return H′(s, c) // G0

11 : else return Hrej(c) // G1 −G6

Figure 3.4: Games G0 – G11 for the proof of Theorem 1.
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Game G2: In game G2, we implicitly divide the G-queries into two cate-
gories: (1) query is of the form (m, h) with h = H(pk) and (2) the remaining
queries. We then respond to the queries from the respective categories
with (Gk(m), Gr(m)) and G2(m, h) respectively, where Gk, Gr are internal
random oracles. It is not hard to verify that the output distributions of the
G-oracle in games G1 and G2 are equivalent. Therefore,

Pr[G2 = 1] = Pr[G1 = 1].

Game G3: In game G3, we make the following changes w.r.t. the G-
oracle evaluation. First, we generate the values k

∗
, r∗ in setup of the game

as “k
∗ ← Gk(m∗)” and “r∗ ← Gr(m∗)” (effectively replacing the step

“(k
∗
, r∗) ← G(m∗, H(pk))” in G2). We then similarly generate the values

k
′
, r′ w.r.t. the decapsulation oracle Decapsc∗ as “k

′ ← Gk(m′)” and “r′ ←
Gr(m′)” (replacing the step “(k

′
, r′) ← G(m′, h)” in G2, where h = H(pk)

since we assume honest generation of (pk, sk′) in the setup).
Since these changes are “cosmetic” in nature following our modification

to oracle G in game G2, we have

Pr[G3 = 1] = Pr[G2 = 1].

Game G4: In game G4, we change the random oracle Gr such that it
uniformly samples “good” random coins w.r.t. the key-pair (pk, sk). To be
specific, given a FrodoPKE key-pair (pk, sk) and a message m ∈ {0, 1}256,
define

Rgood((pk, sk), m) = {r ∈ {0, 1}256 | Dec(sk,Enc(pk, m; r)) = m}.2

Now define the oracle Ggood
r ← ΩG such that Ggood

r (m) is sampled
according to a uniform distribution in Rgood((pk, sk), m). In G4, we then re-

place the random oracle Gr with Ggood
r . Note that the task of distinguishing

between G3 and G4 is the same as that of distinguishing between the oracles
Gr and Ggood

r . And the latter distinguishing probability can be bounded
by using Lemma 5 in a similar fashion as in the analysis of the “G1 → G2”
game-hop in the proof of [5, Theorem 1], while relying on the δ-correctness
of FrodoPKE; by following the reduction in [5], it is not hard to obtain

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ 2qG
√

δ.

2 Note that {0, 1}256 is both the message space and encryption randomness space of FrodoPKE
when targeting NIST PQC “Level 5” security; see Subsection 3.1.1.



3.1 ind-cca security of frodokem in the qrom 31

Game G5: In game G5, we replace the random oracle Gk with a 2qG-wise
independent function, following Lemma 1. Random polynomials of degree
2qG − 1 over the finite field representation of the message space {0, 1}256

are 2qG-wise independent. Let Ωpoly be the set of all such polynomials. We
are then replacing the step “Gk ←$ ΩG” with “Gk ←$ Ωpoly” in G5. From
Lemma 1, as this change is indistinguishable when the oracle Gk is queried
at most qG times, we have

Pr[G5 = 1] = Pr[G4 = 1].

Game G6: In game G6, we implicitly divide the H′-queries into two
disjoint categories: (1) query is of the form (k, c) such that there exists
m ∈ {0, 1}256 which is a root of the polynomial Gk(x)− k (recall that Gk
is now a polynomial) and Enc(pk, m; Gr(m)) = c, and (2) the remaining
queries. We then respond to queries from the respective categories with
Hacc(c) and H2(k, c), where Hacc is an internal random oracle not directly
accessible to the adversary A.

Focusing on H′-queries in “category (1)”, note that it is not possible
for two distinct queries (k

′
, c) and (k

′′
, c) to result in the same output

Hacc(c). The reason is, as Gr now samples “good” random coins, there can
exist at most one value m that satisfies Enc(pk, m; Gr(m)) = c. And since
Gk(·) is a deterministic function, the above follows. Therefore, the output
distributions of the H′-oracle in the games G5 and G6 are equivalent, and
we get

Pr[G6 = 1] = Pr[G5 = 1].

Game G7: In game G7, we change the Decapsc∗ oracle such that there is no
need for the secret key sk′. Namely, Hacc(c) is returned for the decapsulation
of any ciphertext c w.r.t. sk′. Let m′ = Dec(sk, c), r′ = Gr(m′) and k

′
=

Gk(m′). Now consider the following two cases:

1. Enc(pk, m′; r′) = c: In this case, the Decapsc∗ oracle returns H′(k
′
, c)

in game G6 and Hacc(c) in game G7. It is not hard to see that we have
H′(k

′
, c) = Hacc(c) in G6, since the query (k

′
, c) falls under “category

(1)” w.r.t. oracle H′. Therefore, Decapsc∗ oracles of games G6 and G7
return the same value Hacc(c).

2. Enc(pk, m′; r′) ̸= c: In this case, the Decapsc∗ oracle returns Hrej(c)
in game G6 and Hacc(c) in game G7. In game G6, as the random
function Hrej is independent of all other oracles, the output Hrej(c) is
uniformly random in the adversaryA’s view. In game G7, the only way
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A gets prior access to the value Hacc(c) is if it made a H′-query (k
′′

, c)
such that Enc(pk, m′′; Gr(m′′)) = c (and Gk(m′′) = k

′′
). But since Gr

samples “good” random coins, we have Dec(sk, c) = m′′ = m′ leading
to a contradiction of “Enc(pk, m′; r′) ̸= c”. Therefore, such a prior
access is not possible and Hacc(c) will also be a uniformly random
value in A’s view.

As the output distributions of the Decapsc∗ oracle in G6 and G7 are the
same in both cases, we have

Pr[G7 = 1] = Pr[G6 = 1].

Game G8: In game G8, we make a further modification to the evaluation
of “category (1)” H′-queries of the form (k, c∗) as follows, where c∗ is the
challenge ciphertext computed in the setup: respond to the corresponding
“category (1)” query with H3(m), where m is a (lexicographically minimal)
root of polynomial Gk(x)− k that satisfies Enc(pk, m; Gr(m)) = c∗. Here H3
is another internal independent random oracle.

Since we established in the “G5 → G6” game-hop that there cannot
be two distinct “category (1)” H′-queries (k

∗
, c∗) and (k

′
, c∗), this further

change to the H′-oracle only affects the H′-query (k
∗
, c∗), where k

∗
=

Gk(m∗) for the secret message m∗ sampled uniformly at random in the
setup (and Enc(pk, m∗; Gr(m∗)) = c∗). W.r.t. this query, the H′ oracle would
return Hacc(c∗) in G7, and H3(m∗) in G8. The adversary A’s view would
be identical even after this change because the random value Hacc(c∗) is
only accessible to A via the H′-oracle in G7, and in particular, not through
the Decapsc∗ oracle since c∗ is a forbidden decapsulation query. Hence in
G8, we are effectively replacing a uniformly random value that can only
be accessed via the H′-oracle by A with another uniformly random value.
Hence, the output distributions of the H′-oracle in the games G7 and G8 are
equivalent. Therefore, we have

Pr[G8 = 1] = Pr[G7 = 1].

Following the above modification, we make a “cosmetic” change in the
setup where the “real” key k∗0 defined in the setup is now generated as
“k∗0 ← H3(m∗)” (instead of “k∗0 ← H′(k

∗
, c∗)”). This change does not affect

the game in any way.
Game G9: In game G9, we reset the random oracle Gr so that it returns

uniformly random coins from {0, 1}256 instead of returning only “good”
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AGr×H3(m∗, (r∗, k∗0))

1 : (pk, sk′)← KGen′

2 : G2 ←$ ΩG2 ; Gk ←$ Ωpoly

3 : H2 ←$ ΩH; Hacc ←$ ΩH′

4 : b←$ {0, 1}
5 : c∗ ← Enc(pk, m∗; r∗)

6 : k∗1 ←$ {0, 1}256

7 : inp← (pk, (c∗, k∗b))

8 : b′ ← AG,H′ ,Decapsc∗ (inp)

9 : return [b′ = b]

G(m, h)

1 : if h = H(pk) then

2 : r ← Gr(m)

3 : k← Gk(m)

4 : else (k, r)← G2(m, h)

5 : return (k, r)

H′(k, c)

1 : Compute set of roots S

of polynomial Gk(x)− k

2 : if ∃m′ ∈ S s.t.

Enc(pk, m′; Gr(m′)) = c

3 : if c = c∗ then

4 : return H3(m′)

5 : return Hacc(c)

6 : return H2(k, c)

Decapsa

1 : if c = a then return ⊥
2 : return Hacc(c)

Figure 3.5: Algorithm AGr×H3 for the proof of Theorem 1.

random coins. Since this change, in a sense, is the “inverse” of the game-hop
“G3 → G4”, by using a similar analysis, we obtain

|Pr[G9 = 1]− Pr[G8 = 1]| ≤ 2qG
√

δ.

Game G10: In the set-up of game G10, we generate the values r∗ and k∗0
such that they are uniformly random values independent of any oracles,
i.e., we replace the step “r∗ ← Gr(m∗)” with “r∗ ←$ {0, 1}256” and “k∗0 ←
H3(m∗)” with “k∗0 ←$ {0, 1}256”. Note that in this game, both the “real”
and “random” keys are sampled uniformly at random from {0, 1}256 (i.e.,
both keys have the exact same distribution). Hence, the challenge bit b is
independent from A’s view and we get

Pr[G10 = 1] =
1
2

.

Now we use the original OW2H lemma (Lemma 3) to bound the differ-
ence in the success probabilities of A in G9 and G10. Let A be an oracle
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algorithm that has quantum access to the random oracle Gr × H3, where
Gr, H3 ←$ ΩG and (Gr × H3)(m) = (Gr(m), H3(m)). Figure 3.5 describes
AGr×H3 ’s operation on input (m∗, (r∗, k∗0)). Note that the algorithm AGr×H3

makes at most qG + qH′ number of queries to the random oracle Gr × H3
to respond to A’s G-oracle and H′-oracle queries.3. With this construction
of A, note that P1

A = Pr[G9 = 1] and P2
A = Pr[G10 = 1], where P1

A and
P2

A are as defined in Lemma 3 w.r.t. the algorithm AGr×H3 ; to analyze the
corresponding probability PB in Lemma 3, we define game G11 as shown in
Figure 3.4 such that PB = Pr[G11 = 1]. From Lemma 3, we now have

|Pr[G9 = 1]− Pr[G10 = 1]| ≤ 2(qG + qH′)
√

Pr[G11 = 1]

Finally, we bound the success probability of A in G11 by a reduction
to the OW-/IND-CPA security of the base FrodoPKE scheme. Specifically,
we construct an OW-CPA adversary B′ against FrodoPKE such that on
input a public-key pk along with a ciphertext c∗, where c∗ ← Enc(pk, m∗; r∗)
for uniformly random (secret) message m∗(←$ {0, 1}256) and randomness
r∗(←$ {0, 1}256) chosen by the OW-CPA challenger, B′ proceeds as follows:

• Runs A as a subroutine as in game G11 (e.g., starting with sampling a
uniformly random bit b←$ {0, 1}).

• Uses two different 2qG-wise independent functions to perfectly simu-
late the random oracles G2 and Gk respectively, two different 2qH′ -wise
independent functions to simulate the random oracles Hacc and H2 re-
spectively, and two different 2(qG + qH′)-wise independent functions
to perfectly simulate the random oracles Gr and H3 respectively in
A’s view, as noted in Lemma 1. Also evaluates A’s G- and H′-queries
using the oracle Gr × H3; the random oracles G and H′ are simulated
in the same way as in G11.

• Answers decapsulation queries using the oracle Hacc as in G11.

• For A’s challenge query, samples a uniformly random key k∗ ←$

{0, 1}256 and responds with (pk, (c∗, k∗)).

• Selects i←$ {1, . . . , qG + qH′}, measures the i-th query to oracle Gr ×
H3 and returns the outcome m′.

3 For example, if AGr×H3 wants to respond to A’s H′-query, then AGr×H3 prepares a uniform
superposition of all states in the output register corresponding to Gr (see [50] for particulars
of this “trick”).
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Again, it is not hard to see that Pr[G11 = 1] ≤ AdvOW-CPA
FrodoPKE(B′). From

Lemma 7, since we know that IND-CPA security of a PKE scheme with a
sufficiently large message space also implies its OW-CPA security, corre-
sponding to adversary B′, there exists an IND-CPA adversary B against
FrodoPKE such that

AdvOW-CPA
FrodoPKE(B′) ≤ AdvIND-CPA

FrodoPKE(B) +
1

2256

where the running time of B is that of B′, and {0, 1}256 is the message space
of FrodoPKE.

Hence by collecting all of the above bounds, we finally arrive at

AdvIND-CCA
FrodoKEM(A) ≤ 2(qG + qH′)

√
AdvIND-CPA

FrodoPKE(B) +
1

2256 +
2qH′

2128 + 4qG
√

δ.

Furthermore, IND-CPA security of the base FrodoPKE scheme was rig-
orously established in [16, Subsection 5.1.4] while relying on hardness of
the LWE problem; the δ-correctness property of FrodoPKE has also been
concretely analyzed in [16, Subsection 2.2.7].

3.1.4 Related Work

Note that in our QROM IND-CCA security proof for FrodoKEM in Sub-
section 3.1.3 above, we relied on the original OW2H lemma introduced
by Unruh [36]. Subsequent to his work, variants of the OW2H lemma
have been proposed in the literature – notably, in the works of [51, 52]
– which allow for tighter IND-CCA security bounds w.r.t. the standard
(implicitly-rejecting) FO transforms in the QROM.

However, the aforementioned tight security proofs make an additional
assumption on the base PKE scheme being injective (as defined in [51];
we will discuss this assumption in a bit more detail in Subsection 3.2.2
below when we consider Kyber). But to the best of our knowledge, a formal
analysis of the injectivity of FrodoPKE is lacking in the literature – in
contrast to Kyber [53]. Hence, we leave such an analysis of FrodoPKE as an
open question, in the context of obtaining tighter IND-CCA security proofs
for FrodoKEM in the QROM.
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3.2 ind-cca security of kyber in the qrom

After analysing FrodoKEM, we now focus on Kyber in this section wherein
we formally prove IND-CCA security of the NIST PQC standard in the
QROM with concrete bounds. We first describe the scheme in more detail
in Subsection 3.2.1. In Subsection 3.2.2, we highlight some issues with
the QROM IND-CCA security claims made for Kyber in its NIST PQC
specification document [11], and then provide a high-level overview of our
new approach to establish its (tight) IND-CCA security. In Subsection 3.2.3,
we present a detailed analysis of Kyber in the QROM which contains all
formal details of our IND-CCA security proof. We conclude the section by
comparing our analysis to some alternative analyses of Kyber in prior and
subsequent work in Subsection 3.2.4.

3.2.1 Specification of Kyber

As described in [11], Kyber is a lattice-based KEM whose claimed IND-
CCA security relies on hardness of the so-called module learning-with-errors
(MLWE) problem [54]. Kyber – or more formally, Kyber.KEM – is constructed
by first starting with a base PKE scheme Kyber.PKE and then applying a
tweaked Fujisaki-Okamoto (FO) transform to it in order to obtain the final
KEM. The tweaked FO transform, which we call FOkyber, is described in
detail in Figure 3.6; we also refer the reader to [11, Section 1.2] for a detailed
specification of Kyber.PKE.

One thing to note is that in our description of FOkyber, we have the
key-deriving hash function H′ to only return outputs of bit-length 256.
However, Kyber technically instantiates H′ with the extendable-output
function SHAKE-256 which can return outputs of arbitrary length. But
rest assured, our subsequent IND-CCA security analysis of Kyber can be
modified in a straightforward manner to account for encapsulated keys
(derived from H′) with arbitrary length.

3.2.2 Technical Overview

As can be seen in Figure 3.6, Kyber implements a transform that deviates
even further from the FO ̸⊥ transform than FrodoKEM does. Specifically, the
keys in Kyber are computed as “k← H′(k, H(c))” where the “pre-key” k is
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KGen′

1 : (pk, sk)← KGen

2 : s←$ {0, 1}256

3 : pk′ ← (pk, H(pk))

4 : sk′ ← (sk, pk′, s)

5 : return (pk, sk′)

Encap(pk)

1 : m←$ {0, 1}256

2 : m← H(m)

3 : h← H(pk)

4 : (k, r)← G(m, h)

5 : c← Enc(pk, m; r)

6 : k← H′(k, H(c))

7 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′)← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return H′(k
′
, H(c))

7 : else return H′(s, H(c))

Figure 3.6: The transform FOkyber used in Kyber. Here we have Kyber.PKE =
(KGen,Enc,Dec) and Kyber.KEM = (KGen′,Encap,Decap). Also we
have hash functions H, H′ with 256-bit outputs and function G with
512-bit outputs.

derived as a hash of the message4 m (to be specific, (k, r)← G(m, H(pk))).
Again there is an extra hashing step between m and the computation of k,
as we have seen for FrodoKEM. But at the same time, there is also a “nested”
hashing of ciphertext in the key-derivation (i.e., Kyber uses “H(c)” instead
of just “c”) as opposed to the standard “single” hashing in FO ̸⊥ and FOfrodo

(see Fig. 3.3).
We argue that this “extra” hash of the ciphertext acts as a barrier when

trying to apply the generic QROM proof techniques used in the literature,
for the standard (implicitly-rejecting) FO transforms, towards establishing
the post-quantum IND-CCA security of Kyber with the same bounds as that
for the standard transforms – contradicting what was claimed in its NIST
PQC specification document [11]. Specifically, it was claimed in [11, Section
4.3.2] that the techniques used by Saito et al. [6] to establish IND-CCA
security for the FO ̸⊥m transform5 (see Fig. 3.1) in the QROM can also be
applied to FOkyber. Now Saito et al. [6] essentially use the same trick as Jiang
et al. [5] use for the FO ̸⊥ transform (see Subsection 3.1.2 above for details of

4 Technically, the “message” m is a hash of a random message m′ ←$ {0, 1}256 (see Line 2 in
“Encap(pk)”, Fig. 3.6). However for the purpose of this overview, we will ignore this detail.
But our subsequent formal analysis of Kyber in Subsection 3.2.3 will take this extra hash into
account.

5 More formally, Saito et al. [6] analyze the so-called “U ̸⊥m ” transform of [4], with an additional
“re-encryption check” during decapsulation (see Lines 4 and 5 in “Decap(sk′, c)”, Fig. 3.1); U ̸⊥m
can essentially be seen as FO ̸⊥m acting on deterministic base PKE schemes.
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the trick) to simulate decapsulation oracles without knowledge of the secret
key in their IND-CCA security reduction. (In fact, Bindel et al. [51] show that
concrete IND-CCA security of the FO ̸⊥m transform is essentially equivalent
to that of FO ̸⊥ in the QROM.) Hence as already argued in Subsection 3.1.2,
this trick cannot be extended in a straightforward fashion to FOkyber because
of the extra hashes in key-derivation.

At least for FOfrodo, we were able to account for the “nested” hashing of
message because it was length-preserving. However, this is not the case for
“H(c)” in Kyber. In fact, we believe that an IND-CCA security reduction for
Kyber in the QROM, following the proof strategies used for FO ̸⊥m (and FO ̸⊥)
in the literature, would need to rely on the collision-resistance of H when
modelled as a quantum random oracle; and this would necessarily result
in an additive “collision-resistance” term in the security bounds for Kyber,
thereby deviating from the tight bounds we have for the aforementioned
implicitly-rejecting standard FO transforms in the literature (e.g., in [51,
52]). But modulo this additive term, we will now describe our approach to
establish tight IND-CCA security for Kyber in the QROM.

We begin by first describing an alternative – and “simpler” – approach
to prove IND-CCA security of Kyber in the QROM, and then contrasting
it with our approach. Before discussing the tweaked FO variant, namely
FOkyber, used by Kyber (described in Figure 3.6), let us again consider
some standard FO transforms in the literature [3, 4], namely the explicitly-
rejecting FO⊥m and the implicitly-rejecting FO ̸⊥m , described in Figure 3.1.

For ease of exposition, we now consider a simplified6 version of FOkyber

where the only main difference compared to FO⊥m is that, instead of stop-
ping at “k ← Gk(m)” (Line 4 in Encap(pk), Fig. 3.1) during encapsulation,
there is an extra layer of hashing to compute the final encapsulated key.
Namely, Kyber outputs keys of the form “k ← H′(k, H(c))” where H, H′

are two additional hash functions; decapsulation proceeds analogously
where instead of returning a ⊥ when rejecting a ciphertext, Kyber implicitly
rejects by returning H′(s, H(c)). Hence, (this simplified version of) Kyber
can be seen as a “wrapper” scheme w.r.t. the FO⊥m KEM with appropriate
modifications to the encapsulation and decapsulation steps. As a result,
the IND-CCA security of Kyber can be easily shown by relying on the
IND-CCA security of the underlying FO⊥m KEM.

To sketch out the proof, we start with the IND-CCA security game
w.r.t. (the simplified) Kyber where the adversary gets a challenge ciphertext

6 In this simplified variant, we are ignoring the additional hashes of the message m and public
key pk in Lines 2 and 3 respectively in Encap(pk), Figure 3.6.
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c∗ and the real encapsulated key “H′(k
∗
, H(c∗))” (refer to Subsection 2.3.2

for a precise description of the IND-CCA security games for KEMs). We
then modify the game via the following “hybrids”:

1. In the first hybrid, we provide the adversary with a new encapsu-
lated key “H′(k

′
, H(c∗))”, where k

′
is an independent and uniformly

random value. This modification is justified by relying on IND-CCA
security of the underlying FO⊥m KEM. Because note that k

∗
can be seen

as the “real” encapsulated key of the FO⊥m KEM and k
′

a “random”
key, and IND-CCA security of FO⊥m implies (computational) indistin-
guishability of both these keys. One important thing worth noting
here is that in the reduction to IND-CCA security of FO⊥m , we can
simulate the decapsulation oracle of Kyber as follows. We first sample
the secret s ←$ M. Then to simulate the “Kyber-decapsulation” of
a ciphertext c, we first perform the “FO⊥m-decapsulation” of c: if the
result is a key k, we return the “Kyber-key” as H′(k, H(c)); if the
result is ⊥, we return the “Kyber-key” as H′(s, H(c)). Note that for
this reduction to work, it is crucial that the underlying FO transform,
FO⊥m , is explicitly rejecting, in order to perfectly simulate the rejection
of ciphertexts during decapsulation.

2. In the second and final hybrid, we again switch back to the IND-
CCA security game w.r.t. Kyber where the adversary gets a uniformly
random encapsulated key “k” which is independent of c∗. This modifi-
cation is again justified by relying on the pseudorandomness provided
by the quantum random oracle H′(k

′
, ·) (see Lemma 2) – i.e., since

the “PRF key” k
′

is independent of c∗, one can argue the (statistical)
indistinguishability of the keys “H′(k

′
, H(c∗))” and “k”.

The IND-CCA security of (the simplified) Kyber in the QROM hence
follows since the adversary cannot efficiently distinguish between the real
and random encapsulated keys “H′(k

∗
, H(c∗))” and “k” respectively in the

above hybrids.
However, a major issue with the above approach to prove concrete (and

tight) IND-CCA security of Kyber is related to our dependence on the IND-
CCA security of FO⊥m in the QROM in the first place. IND-CCA security
of the FO⊥m transform, with concrete bounds, has been notoriously hard
to prove in the QROM – in contrast to its implicitly-rejecting variant, i.e.,
FO ̸⊥m . Namely, a long sequence of prior works [5, 6, 51, 52, 55] provided
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concrete IND-CCA security proofs for FO ̸⊥m in the QROM, with each follow-
up improving the tightness of the corresponding reduction. For example,
Kuchta et al. [52] were the first to provide a security proof that avoided a
square-root advantage loss w.r.t. the weak (IND-CPA/OW-CPA) security
of the underlying PKE scheme; this loss seemed inherent with previous
reductions for the FO transforms in the QROM. To also showcase the
relative simplicity of analyzing the IND-CCA security of FO ̸⊥m in the QROM,
Unruh [56] showed a framework for formally verifying the corresponding
post-quantum security proof of the implicitly-rejecting transform provided
in [55].

When it comes to the explicitly-rejecting FO⊥m transform, the story is
arguably more complicated. Looking at prior work, some starting steps
were taken in [4, 37, 47, 50] in this regard wherein concrete IND-CCA
security proofs for modified versions of the FO⊥m transform – which include
an additional “key confirmation” hash in the ciphertext – were provided
(however, security proofs in [37, 50] were later found to have bugs in
them [37]). The unmodified FO⊥m transform was later analyzed in [57, 58] in
the QROM; however, the provided security proofs had some subtle gaps [7].
These gaps were subsequently resolved in [7, 8] resulting in the first IND-
CCA security proofs for the original FO⊥m transform in the QROM with
concrete bounds. Quite recently, at the time of writing this thesis, Ge et
al. [59] provided a tighter security proof for the explicitly-rejecting FO⊥m
which avoided a square-root advantage loss w.r.t. passive security of the
underlying PKE scheme, similar to the result of Kuchta et al. [52] for the
implicitly-rejecting FO ̸⊥m .

However, the above IND-CCA security analyses of FO⊥m in [7, 8, 59]
assume certain computational and statistical properties of the underlying
PKE scheme which are not well-studied w.r.t. the NIST PQC standard
Kyber. These properties include (weak) γ-spreadness, so-called Find Failing
Plaintext (FFP) security (as introduced in [8]), etc. This is in contrast to the
aforementioned QROM security proofs for the implicitly-rejecting FO ̸⊥m in
the literature. For example, the tight IND-CCA security proof of FO ̸⊥m by
Kuchta et al. [52] makes an additional assumption on the underlying PKE
scheme – namely, that the scheme satisfy a property called injectivity (as
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defined in [51])7; in subsequent work, Ding et al. [53] rigorously established
injectivity for Kyber by providing concrete bounds.

This brings us to our approach to establish tight IND-CCA security
for Kyber in the QROM. In essence, we provide a way to salvage the
above “wrapper-based” approach – even when the underlying FO transform is
implicitly-rejecting. As noted in the above reduction, we crucially relied on
the explicit-rejection of FO⊥m in order to perfectly simulate decapsulation ora-
cles. But if we start with the FO ̸⊥m transform, it is not so straightforward how
to simulate the “Kyber-decapsulation” oracle using the “FO ̸⊥m -decapsulation”
oracle especially when the latter oracle rejects ciphertexts; as described in
Figure 3.1 (Line 9), the rejection output Gk(s, c) still “looks” like a valid key.

To resolve the above simulation issue, we start with the FO ̸⊥m transform
and modify its decapsulation algorithm in a way such that the overall
IND-CCA security of the transform in the QROM is affected negligibly (in
a statistical sense). Similarly, we also modify the decapsulation procedure
used in the actual Kyber scheme such that (i) the IND-CCA security of
the original and modified schemes are statistically equivalent, and (ii)
the IND-CCA security of the modified scheme can be reduced to the
IND-CCA security of the modified FO ̸⊥m transform wherein we can now
simulate the “modified-Kyber-decapsulation” oracle using the “modified-
FO ̸⊥m -decapsulation” oracle perfectly in the corresponding reduction. It is
then not hard to see that this indirectly allows us to base IND-CCA security
of the actual Kyber scheme on that of the unmodified FO ̸⊥m transform, with
a negligible loss in tightness.

Finally, another advantage of using our “wrapper-based” approach w.r.t.
the implicitly-rejecting FO ̸⊥m transform – when compared to the explicitly-
rejecting FO⊥m – is related to establishing “beyond IND-CCA” security prop-
erties for Kyber in the post-quantum setting. As will be seen in Chapters 4

and 5, we will focus on one such property called anonymity (or, key-privacy)
as introduced in [12]; roughly speaking, anonymity guarantees that a ci-
phertext does not reveal the public key used to generate it, thereby hiding
the recipient’s identity. Now given our discussion above on the relative ease

7 More technically, Kuchta et al. [52] require a deterministic version of the PKE scheme, where
the random coins used in encryption are derived from hashing the input message (cf. the “T”
transform defined in [4] and also described in Fig. 4.9), to be injective. Roughly speaking, such
deterministic PKE schemes are said to be η-injective if the probability that the deterministic
encryption function for a random choice of public key (which is honestly generated) and
random choice of the above hash function (modelled as a random oracle) is not injective is
upper-bounded by η.
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KGen′

1 : (pk, sk)← KGen

2 : s←$ {0, 1}256

3 : pk′ ← (pk, H(pk))

4 : sk′ ← (sk, pk′, s)

5 : return (pk, sk′)

Encap(pk)

1 : m←$ {0, 1}256

2 : h← H(pk)

3 : (k, r)← G(m, h)

4 : c← Enc(pk, m; r)

5 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′)← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return k
′

7 : else return H′(s, c)

Figure 3.7: The PKE→ KEM transform FO
kyber
pre .

to prove IND-CCA security properties of FO ̸⊥m when compared to FO⊥m in
the QROM literature, subsequent works [60] went on to prove “beyond
IND-CCA” properties such as anonymity for the implicitly-rejecting trans-
form in the QROM. In Chapter 5, we will then show how to adapt the above
“wrapper-based” approach to also establish post-quantum anonymity of
Kyber.

3.2.3 Security Analysis

Towards proving the concrete IND-CCA security of Kyber in the QROM, we
first consider an intermediate PKE → KEM transform FO

kyber
pre , described

in Figure 3.7. Note that the FO
kyber
pre transform is essentially identical to

the FO ̸⊥m transform (described in Fig. 3.1) in the context of proving IND-
CCA security of the obtained KEM. That is, the existing IND-CCA security
theorems w.r.t. FO ̸⊥m in the QROM derived in the literature – e.g., in [5, 6, 51,
52], as discussed above – apply to FO

kyber
pre as-it-is because of the following

reasons:

• Note that FO
kyber
pre uses a single hash function G to compute both

the encapsulated key k and the random coins r for the deterministic
encryption of m during encapsulation, whereas FO ̸⊥m uses two separate
hash functions for the same. However, these two computations are
equivalent when the corresponding hash functions are modeled as
independent random oracles with appropriate output lengths.
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• Similarly, FOkyber
pre uses the hash H(pk) to compute k and r during

encapsulation (and H(pk) is also included in the final KEM’s secret
key sk′), in contrast to FO ̸⊥m . But this change preserves the relevant
IND-CCA theorems from FO ̸⊥m to FO

kyber
pre with trivial changes to

the corresponding proofs, to accommodate the inclusion of H(pk),
because the IND-CCA security game only involves a single user’s
public key pk – as opposed to multi-user security notions such as
anonymity (or ANO-CCA security as will be formalized in Chapters 4

and 5) which involves two public-keys.

Now let Kyber.KEM be the KEM obtained by applying FO
kyber
pre transform

on the base PKE scheme Kyber.PKE = (KGen,Enc,Dec), i.e., Kyber.KEM =

FO
kyber
pre [Kyber.PKE, G, H, H′]. In the following, we show that IND-CCA secu-

rity of the actual Kyber.KEM = FOkyber[Kyber.PKE, G, H, H′] (see Figure 3.6)
in the QROM can be tightly reduced to the corresponding IND-CCA secu-
rity of Kyber.KEM (modulo some additive terms in the security bounds).

Theorem 2. For any IND-CCA adversary A against the scheme Kyber.KEM =
(KGen′,Encap,Decap) issuing at most qH and qH′ queries to the quantum random
oracles H and H′ respectively, there exists an IND-CCA adversary A against
Kyber.KEM = (KGen

′,Encap,Decap) issuing at most q′D classical queries to the
decapsulation oracle, and q′H and q′H′ queries to the quantum random oracles H
and H′ respectively – with q′H′ ≤ qH′ and (q′D + q′H) ≤ qH – such that

AdvIND-CCA
Kyber.KEM(A) ≤ AdvIND-CCA

Kyber.KEM(A) + 7qH′ + 2qH

2128 +
C(qH + 1)3

2256 ,

where C (< 648) is the constant from Lemma 6, and the running time of A is
about the same as that of A.

The proof essentially follows the “wrapper-based” approach described
in Subsection 3.2.2 above but with respect to the implicitly-rejecting FO ̸⊥m
transform. Formal details follow.

Proof. Denote ΩG, ΩH, ΩH′ , ΩH′′ and ΩH to be the set of all functions G :
{0, 1}512 → {0, 1}512, H : {0, 1}256 ∪ PK ∪ C → {0, 1}256, H′ : {0, 1}256 ×
({0, 1}256∪C)→ {0, 1}256, H′′ : {0, 1}256∪C → {0, 1}256 and H : {0, 1}256 →
{0, 1}256 respectively, where PK is the space of all Kyber.PKE public keys
and C is the ciphertext space of Kyber.PKE.

Let A be an IND-CCA adversary against Kyber.KEM issuing at most q′D
classical queries to the decapsulation oracles, and q′H and q′H′ queries to the
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Games G0 − G2

1 : G ←$ ΩG; H ←$ ΩH; H′ ←$ ΩH′

2 : H′′ ←$ ΩH′′ ; H ←$ ΩH

3 : (pk, sk′)← KGen
′

4 : (c∗, k
∗
0)← Encap(pk)

5 : k
∗
1 ←$ {0, 1}256

6 : b←$ {0, 1}

7 : b′ ← AG,H,H′ ,Decapsc∗ (pk, c∗, k
∗
b )

8 : return [b′ = b]

Decapsa(c)

1 : if c = a then return ⊥
2 : Parse sk′ = (sk, pk, h, s)

3 : m′ ← Dec(sk, c)

4 : (k
′
, r′)← G(m′, h)

5 : c′ ← Enc(pk, m′; r′)

6 : if c′ = c then

7 : return k
′

8 : else return H′(s, c) // G0

9 : else return H′′(c) // G1

10 : else return H(H(c)) // G2

Figure 3.8: Games G0 – G2 for the proof of Theorem 2. Here Enc and Dec are the
encryption and decryption algorithms of the base Kyber.PKE scheme.

quantum random oracles H and H′ respectively. Consider the sequence of
games G0 – G2 described in Figure 3.8 which only differ in the way their
corresponding decapsulation oracles Decapsc∗ reject invalid ciphertexts.

Game G0: This game is exactly the IND-CCA game for Kyber.KEM. Hence,∣∣∣Pr[G0 = 1]− 1
2

∣∣∣ = AdvIND-CCA
Kyber.KEM(A).

Game G1: In this game, the Decapsc∗ oracle is modified such that H′′(c)
is returned instead of H′(s, c) for an invalid ciphertext c, where H′′ is a
fresh internal random oracle not directly accessible to A. Using Lemma 2

w.r.t. the pseudorandomness of H′(s, ·) during decapsulation, where we
have the “PRF key” s←$ {0, 1}256, it is not hard to obtain the following via
a straightforward reduction:

∣∣Pr[G1 = 1]− Pr[G0 = 1]
∣∣ ≤ 2q′H′

2128 .

Game G2: In this game, we again modify the Decapsc∗ oracle such that
H(H(c)) is returned instead of H′′(c) for an invalid ciphertext c, where H is
another fresh internal random oracle not directly accessible to A. Note that
the oracles H′′ and H are only accessible to A indirectly via the Decapsc∗

oracle. Now in the view of adversary A, the output distributions of the
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Decapsc∗ oracle in games G1 and G2 with regards to invalid ciphertexts c are
identical unless A queries the decapsulations of two invalid ciphertexts c1
and c2 such that H(c1) = H(c2) (and c1 ̸= c2). Since decapsulation queries
are considered to be classical in the QROM, we can bound the probability
of such an event by collision-resistance of the QRO H – as described in
Lemma 6 – again via a straightforward reduction. Hence, we have8,

∣∣Pr[G2 = 1]− Pr[G1 = 1]
∣∣ ≤ C(q′H + q′D + 1)3

2256 ,

where C (< 648) is the constant from Lemma 6.
Hence by collecting the above bounds, we obtain∣∣∣Pr[G2 = 1]− 1

2

∣∣∣ ≤ AdvIND-CCA
Kyber.KEM(A) +

2q′H′
2128 +

C(q′H + q′D + 1)3

2256 , (3.1)

which will be useful shortly when we now focus on proving concrete
IND-CCA security of the actual scheme of Kyber.

Let A be an IND-CCA adversary against Kyber.KEM issuing at most qH
and qH′ queries to the quantum random oracles H and H′ respectively.
Consider the sequence of games G0 – G8 described in Figure 3.9.

Game G0: This game is basically the IND-CCA game for Kyber.KEM
where the adversary A gets the “real” encapsulated key k∗, i.e., (c∗, k∗)←
Encap(pk).

Game G1: Here we essentially do not execute the “m ← H(m)” step
during encapsulation (Line 2 in “Encap(pk)”, Fig. 3.6) in this game’s setup.
We now use the original OW2H lemma (Lemma 3) to bound the difference
in A’s “behavior” in games G0 and G1. In the context of applying Lemma 3,
let x := m∗0 ←$ {0, 1}256 and y := m∗1 ←$ {0, 1}256, and consider an oracle
algorithm AH making at-most qH queries to H such that AH(m∗0 , H(m∗0))
simulates the game G0 towards A and AH(m∗0 , m∗1) simulates G1 towards
A.9 To be more specific, AH sets “m∗” in Line 4, Fig. 3.9, to be its second
input (either H(m∗0) or m∗1) when simulating the appropriate game (G0 or
G1, respectively) towards A.

8 Recall from our convention (described in Section 2.3) that q′H counts the total number of times
H is invoked in the game G0. However in G2, H is additionally invoked when A queries the
decapsulation of an invalid ciphertext. Hence, H is queried at most (q′H + q′D) many times in
G2 in the context of applying Lemma 6.

9 Technically, we have the domain of random oracle H to be {0, 1}256 ∪ PK ∪ C. However in
Kyber, we have {0, 1}256 ∩ (PK∪C) = ϕ. Because of this domain separation, we can effectively
apply Lemma 3 by restricting the domain of H to be X := {0, 1}256.
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Games G0 − G8

1 : G ←$ ΩG; H ←$ ΩH; H′ ←$ ΩH′

2 : H′′ ←$ ΩH′′ ; H ←$ ΩH

3 : (pk, sk′)← KGen′

4 : m∗ ←$ {0, 1}256

5 : m∗ ← H(m∗) // G0,G8

6 : (k
∗
0 , r∗)← G(m∗, H(pk))

7 : k
∗
1 ←$ {0, 1}256

8 : c∗ ← Enc(pk, m∗; r∗)

9 : k∗ ← H′(k
∗
0 , H(c∗)) // G0 – G3

10 : k∗ ← H′(k
∗
1 , H(c∗)) // G4

11 : k∗ ←$ {0, 1}256 // G5 – G8

12 : b′ ← AG,H,H′ ,Decapsc∗ (pk, c∗, k∗)

13 : return b′

Decapsa(c)

1 : if c = a then return ⊥
2 : Parse sk′ = (sk, pk, h, s)

3 : m′ ← Dec(sk, c)

4 : (k
′
, r′)← G(m′, h)

5 : c′ ← Enc(pk, m′; r′)

6 : if c′ = c then

7 : return H′(k
′
, H(c))

8 : else

9 : return H′(s, H(c)) // G0–G1, G7–G8

10 : return H′′(H(c)) // G2,G6

11 : return H′(H(H(c)), H(c)) // G3–G5

Figure 3.9: Games G0 – G8 for the proof of Theorem 2. Here Enc and Dec are the
encryption and decryption algorithms of the base Kyber.PKE scheme.
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Again in the context of Lemma 3, it is not hard to see that Pr[G0 = 1] = P1
A

and Pr[G1 = 1] = P2
A. Regarding the probability PB, note that during

AH(m∗0 , m∗1)’s simulation of game G1 towardsA, the view ofA is completely
independent of the value m∗0 (= x)←$ {0, 1}256. Hence, we have PB = 1

2256

which leads to

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2qH

2128 (= 2qH
√

PB).

Game G2: In this game, the Decapsc∗ oracle is modified such that
H′′(H(c)) is returned instead of H′(s, H(c)) for an invalid ciphertext c,
where H′′ is a fresh internal random oracle not directly accessible to A.
Similar to the G0 → G1 “hop” above, by using Lemma 2 w.r.t. the pseu-
dorandomness of H′(s, ·)–this time on inputs of the form “H(c)”–during
decapsulation, it is not hard to obtain:

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2qH′

2128 .

Game G3: In this game, we again modify the Decapsc∗ oracle such that
H′(H(H(c)), H(c)) is returned instead of H′′(H(c)) for an invalid cipher-
text c, where H is another fresh internal random oracle not directly accessi-
ble to A. Here we use the generalized OW2H lemma (Lemma 4) to bound
the difference in A’s behavior in games G2 and G3.

In the context of Lemma 4, note that the oracle algorithm needs to
distinguish the pair of random functions (H′′(·), H′) in G2 from the pair
(H′(H(·), ·), H′) in G3. But it is not hard to see that this is the same as
distinguishing (H′′, H′) in G2 from (H′′, G′) in G3, where the oracle G′

is obtained by reprogramming H′ on inputs of the form “(H(x), x)” with
x ∈ {0, 1}256; namely, we have

G′(y) =

H′′(x) if y is of the form (H(x), x) with x ∈ {0, 1}256

H′(y) otherwise.

So again in the context of applying Lemma 4, consider an oracle algorithm
A which has quantum access to either (H′′, H′) or (H′′, G′) such that AH′′ ,H′

and AH′′ ,G′ simulate G2 and G3 respectively towards A, while making qH′

oracle queries.10 Note that the set of differences between the H′ and G′

10 For example, A uses the first oracle H′′ to simulate Decapsc∗ in Figure 3.9 w.r.t. invalid
ciphertexts c; given such a decapsulation query c from A, the algorithm A returns H′′(H(c)),
where the oracle H is sampled independently by A at the games’ setup.



48 ind-cca security enhancements , revisited

oracles is S = {(H(x), x) | x ∈ {0, 1}256}. If we then set Pr[G2 = 1] = Pleft
and Pr[G3 = 1] = Pright, from Lemma 4 we have |Pr[G3 = 1] − Pr[G2 =

1]| ≤ 2qH′
√

Pguess. Regarding Pguess, note that during AH′′ ,H′ ’s simulation
of G2 towards the adversary A, the view of A is completely independent of
the (internal) random oracle H. Hence the probability that measurement
of a random H′-oracle query in G2 will be of the form (H(x), x) (with
x ∈ {0, 1}256) is at-most 1

2256 , i.e., Pguess ≤ 1
2256 , since H(x) will be a fresh

uniformly random value in {0, 1}256. Therefore,

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ 2qH′

2128 .

Game G4: In this game, we generate the encapsulated key k∗ in the setup
as “k∗ ← H′(k

∗
1 , H(c∗))” instead of “k∗ ← H′(k

∗
0 , H(c∗))” where we have

(k
∗
0 , r∗) ←$ G(m∗, H(pk)) and k

∗
1 ←$ {0, 1}256. Here we make use of our

analysis of the FO
kyber
pre transform above.

Consider the game G2 “played” by adversaryA in Fig. 3.8 w.r.t. Kyber.KEM.
Depending on whether A gets the “real pre-key” k

∗
0 or the “random pre-

key” k
∗
1 from its challenger, it can simulate the game G3 or G4 respectively

towards A. Namely, AH,H′
(c∗, k

∗
b) computes the encapsulated key k∗ as

k∗ ← H′(k
∗
b , H(c∗)) (where b is the bit sampled by A’s challenger in Fig. 3.8)

and sends it to A during the games’ setup. AH,H′ ,Decapsc∗ also simulates the
decapsulation oracle in games G3 and G4 (see Fig. 3.9) as follows: given a
decapsulation query c from A, A queries its own Decapsc∗ oracle in G2 on
c to obtain a key k

′
–which can also be the value “H(H(c))” if c is invalid

(see Line 9 in “Decap(sk′, c)”, Fig. 3.8)–and returns H′(k
′
, H(c)) to A. Hence,

it is not hard to see from this reduction that

|Pr[G4 = 1]− Pr[G3 = 1]| =
∣∣Pr[1← A | b = 1]− Pr[1← A | b = 0]

∣∣
= 2 ·

∣∣∣Pr[G2 = 1]− 1
2

∣∣∣.
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By using Inequality (3.1) above w.r.t. our analysis of Kyber.KEM, we
obtain11

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ 2AdvIND-CCA
Kyber.KEM(A) + 4qH′

2128 +
2C(qH + 1)3

2256 .

Game G5: Here we have the encapsulated key k∗ in the setup to be an
independent and uniformly random value, i.e., “k∗ ←$ {0, 1}256”, instead
of deriving it from H′ as “k∗ ← H′(k

∗
1 , H(c∗))”. Similar to the G0 → G1 hop

above, by using Lemma 2 w.r.t. the pseudorandomness of H′(k
∗
1 , ·)–with

“PRF key” k
∗
1 ←$ {0, 1}256–during setup, it is not hard to obtain:

|Pr[G5 = 1]− Pr[G4 = 1]| ≤ 2qH′

2128 .

Game G6: In this game, we modify the Decapsc∗ oracle such that H′′(H(c))
is returned instead of H′(H(H(c)), H(c)) for an invalid ciphertext c. In
essence, we are reverting the changes introduced in the “G2 → G3” hop.
Hence, by applying a similar reasoning as that hop, we get

|Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2qH′

2128 .

Game G7: In this game, Decapsc∗ oracle is modified such that H′(s, H(c))
is returned instead of H′′(H(c)) for an invalid ciphertext c. Again in essence,
we are reverting the changes introduced in the “G1 → G2” hop. Hence, by
using a similar reasoning as that hop–namely, pseudorandomness of the
oracle H′(s, ·) on inputs of the form “H(c)”–we obtain

|Pr[G7 = 1]− Pr[G6 = 1]| ≤ 2qH′

2128 .

Game G8: Here we re-introduce the “m← H(m)” step during encapsula-
tion (Line 2 in “Encap(pk)”, Fig. 3.6) in this game’s setup, thereby reverting
the changes introduced in the “G0 → G1” hop. By applying Lemma 3 in a
similar way as that hop, we get

|Pr[G8 = 1]− Pr[G7 = 1]| ≤ 2qH

2128 .

11 Here we replace the term “q′H + q′D” in Inequality (3.1) with “qH”. Recall from Footnote 8

of this chapter that (q′H + q′D) is the maximum number of times oracle H is queried in G2.
But since the decapsulation algorithm of Kyber.KEM involves a single invocation of H(·) for
each input ciphertext c (see “Decap(sk′, c)”, Fig. 3.6), the quantity “qH” includes the number of
times H is queried by A to answer decapsulation queries from A – following our convention
w.r.t. counting the number of random oracle queries in security games (see Section 2.3).
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Now note that G8 is the IND-CCA game for Kyber.KEM where the ad-
versary A gets a “random” encapsulated key k∗, i.e., k∗ ←$ {0, 1}256 (in
contrast to getting the “real” encapsulated key in G0). Hence, we have

2 ·AdvIND-CCA
Kyber.KEM(A) = |Pr[G8 = 1]− Pr[G0 = 1]| .

By collecting the above bounds, we obtain

AdvIND-CCA
Kyber.KEM(A) ≤ AdvIND-CCA

Kyber.KEM(A) + 7qH′ + 2qH

2128 +
C(qH + 1)3

2256 . (3.2)

The above result essentially states that the provable IND-CCA security
guarantees enjoyed by the implicitly-rejecting FO ̸⊥m – and as an extension,
the FO

kyber
pre -derived Kyber.KEM – in the QROM discussed earlier (see Sub-

section 3.2.2) also apply to the actual Kyber.KEM with minimal loss in
tightness. So one can simply “plug in” existing IND-CCA security reduc-
tions for FO ̸⊥m -derived KEMs – w.r.t. the passive OW-/IND-CPA security of
the corresponding base PKE scheme – from the literature in Inequality (3.2)
to obtain concrete IND-CCA security bounds for Kyber in the QROM.

For example, one can use the reduction in [5, Theorem 2] to show the
existence of an IND-CPA adversary B against the base Kyber.PKE scheme,
with its running time about the same as that of IND-CCA adversary A
above, such that12

AdvIND-CCA
Kyber.KEM(A) ≤ 2q′G

√
AdvIND-CPA

Kyber.PKE(B) +
1

2256 +
2q′H′
2128 + 4q′G

√
δ,

where q′G is an upper bound on the number of queries made by A to the
QRO G, and δ is the correctness parameter of Kyber.PKE (see Definition 2).
Regarding the above properties of Kyber.PKE, it was argued in [11, Theorem
1] that (in the (Q)ROM) Kyber.PKE is tightly IND-CPA secure under the
MLWE hardness assumption, since under the MLWE assumption, the public-
key and ciphertexts of Kyber.PKE are pseudorandom; also, the δ-correctness
property of Kyber.PKE has been rigorously analyzed in [11, 61].

Now an advantage of using the reduction in [5, Theorem 2] is that
it mainly uses the "One-Way to Hiding (OW2H) lemma" [36, 37] proof

12 Technically, [5, Theorem 2] reduces the IND-CCA security of the KEM to the OW-CPA security
of the underlying PKE scheme. But recall from Lemma 7 that IND-CPA security of a PKE
scheme with a sufficiently large message space also implies its OW-CPA security (also note
that in Kyber.PKE, the message space is {0, 1}256).
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technique (see Lemmas 3 and 4) which is amenable to formal verification as
shown by Unruh [56]. On the downside however, the reduction is non-tight
in the sense that we incur a square-root advantage loss w.r.t. passive security
of the underlying base PKE scheme.

One can instead use the tighter reduction in [52, Corollary 4.7] to essen-
tially show that there exists an IND-CPA adversary B′ against Kyber.PKE,
with running time at-most three times that of A, such that

AdvIND-CCA
Kyber.KEM(A) ≤ 8q′G · (q′G + 1)

(
AdvIND-CPA

Kyber.PKE(B′) +
8(3q′G + 1)

2256

)
+ 6(3q′G + q′D) · ((8q′G + 1)δ +

√
3η) + (4q′G + 12) · η +

4q′H′
2128 ,

where η is the “injectivity parameter” that was concretely established for
a deterministic version of Kyber.PKE13 in [53], as mentioned in Subsec-
tion 3.2.2 above. Note that the reduction no longer incurs a square-root
advantage loss w.r.t. IND-CPA security of Kyber.PKE. More specifically, the
reduction uses a variant of the OW2H technique known as the “Measure-
Rewind-Measure (MRM)” OW2H lemma [52] to achieve tighter IND-CCA
security bounds. However, to the best of our knowledge, there is currently
no framework to formally verify applications of the MRM OW2H lemma in
post-quantum security proofs – in contrast to Unruh’s framework [56] w.r.t.
the “plain” OW2H lemma. We leave the extension of Unruh’s framework
to cover the MRM variant as an interesting open problem.

Remark 1. It is worth mentioning that NIST has recently started plans [18,
19] to essentially replace the current tweaked FO transform FOkyber (see
Fig. 3.6) used in Kyber with the transform FO

kyber
pre (see Fig. 3.7) above;14 in

other words, Kyber.KEM would potentially be the new NIST PQC standard
over Kyber.KEM. In this context, our above IND-CCA security analysis of

13 Namely, where encryption randomness r is derived from the hash function G; see Lines 3 and
4 in “Encap(pk)” and “Decap(sk′, c)”, Fig. 3.7.

14 Technically, the new transform being considered for Kyber (see [19] for a formal description)
slightly differs from FO

kyber
pre in the way invalid ciphertexts are rejected during decapsulation.

Namely, in the new transform, the hash H′ (see Line 7 in “Decap(sk′, c)”, Fig. 3.7) is no longer
used for rejection, and instead, hash G is used as follows: for an invalid ciphertext c (which
fails the re-encryption check in Line 5, “Decap(sk′, c)”, Fig. 3.7), we compute (k

′′
, r′′)← G(s, c)

and output the key k
′′

. However in Kyber, the sizes of ciphertexts are more than 512 bits
which ensures proper domain separation when computing keys k

′
for valid ciphertexts

(“(k
′
, r′) ← G(m′, h)”; Line 3 in “Decap(sk′, c)”, Fig. 3.7) and keys k

′′
for invalid ciphertexts

(“(k
′′

, r′′)← G(s, c)”) – same as in FO
kyber
pre .
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Kyber.KEM in the QROM can be seen as a “safety net” in case problems
arise in NIST’s aforementioned plans (patent issues, for example) and
Kyber.KEM is once again picked to be the standard.

More importantly, NIST’s decision above showcases the impact our work
in this thesis has on the PQC standardization process; mainly, our obser-
vations in [25, 26] regarding the divergences between Kyber’s variant of
the FO transform and the standard FO transforms in the literature, and
our subsequent arguments regarding the inapplicability of related proof
strategies in the literature to concretely establish IND-CCA security of
Kyber in the QROM – contrary to what was claimed in the specification
document [11].

Remark 2. We would like to point out that the NIST PQC third-round
finalist Saber [62] implements the same variant of FO transform as Kyber,
i.e., FOkyber, in its KEM construction. Hence, our above result on provable
IND-CCA security of Kyber in the QROM also applies to Saber in a similar
fashion (where we would instead need to rely on hardness of solving the
so-called module learning-with-rounding problem [63] for IND-CPA security
of the corresponding base PKE scheme).

3.2.4 Related Work

An alternative approach to prove IND-CCA security of Kyber in the QROM
was suggested in [64], involving the compressed oracle technique introduced
in [57]. More specifically, given two random oracles H1 : {0, 1}m → {0, 1}n,
H2 : {0, 1}n × {0, 1}ℓ → {0, 1}n, and a polynomial-sized stateless classical
circuit C which has quantum access to H1, H2, it was shown in [57, Section
5] that the “domain extender” CH1,H2(x, y) = H2(H1(x), y) is indifferen-
tiable from a quantum random oracle H : {0, 1}m+ℓ → {0, 1}n. Informally,
indifferentiability guarantees that any efficient adversary cannot distin-
guish ⟨(H1, H2), CH1,H2⟩ from ⟨SH , H⟩ where the simulator S queries H
and simulates the oracles H1, H2.

Now note that in Kyber (Fig. 3.6, Line 6 of “Encap(pk)”), the encapsulated
keys are generated as “k← H′(k, H(c))” by hashing the “pre-key” k and a
“nested hash” of the ciphertext, i.e., H(c). And as noted above in Subsec-
tion 3.2.2 above, this nested hash H(c) creates problems when extending
prior QROM security analysis of (implicitly-rejecting) FO transforms in
the literature to Kyber. However, since [57, Section 5] essentially shows
that H′(k, H(c)) is indifferentiable from H′′(k, c), for a fresh random oracle
H′′, we can “ignore” the nested hash H(c) in our analysis of Kyber; in
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fact, the resulting variant of the FO transform, where keys are derived as
“k← H′′(k, c)”, is essentially used by FrodoKEM (see Figure 3.3) – and we
already established concrete IND-CCA security of this variant in the QROM
in Subsection 3.1.3 above. However, we make a couple of remarks regarding
this matter:

• At a conceptual level, our IND-CCA security analysis of Kyber above
relies on arguably simpler proof techniques than the ones intro-
duced in [57]. Specifically, our reduction from IND-CCA security
of Kyber.KEM to that of Kyber.KEM in the QROM (Theorem 2) is
based on the well-known “OW2H lemma” [36, 37] proof technique.
And as mentioned in Subsection 3.2.3 above, Unruh [56] provided a
framework for formally verifying security proofs that involve applica-
tions of the OW2H lemma in the QROM. Hence, this should make
our overall security analysis of Kyber amenable to formal verifica-
tion, thereby providing further confidence in our positive IND-CCA
security results for the new NIST PQC standard.

• Quantitatively, if we rely on the above indifferentiability argument
to analyze Kyber instead, then when switching from “H′(k, H(c))”
to “H′′(k, c)” we would incur an additive “indifferentiability” term
O(q2/2n/2) (as specified in [57, Section 5]) as an overhead in our
IND-CCA security bounds, where q is the number of adversarial QRO
queries made to H, H′, and n = 256 in Kyber. In contrast, our analysis
of Kyber (Theorem 2) incurs an additive “collision-resistance (of H)”
term O(q3/2n) as an overhead – as can be seen in the bounds in
Inequality (3.2). Hence, our concrete IND-CCA security analysis of
Kyber allows for strictly more number of random oracle queries q
when compared to the indifferentiability-based analysis (especially
w.r.t. higher security level parameter sets for Kyber when the “cor-
rectness” term O(q

√
δ) is no longer a limiting factor on q – e.g.,

δ = 2−164, 2−174).

Recently, Chen et al. [65] analyzed the concrete IND-CCA security of
Kyber in the QROM using another alternative approach; more specifically,
it involves using a well-known indistinguishability result between random
functions and random permutations in the quantum setting [40]. However,
since their reduction needs to efficiently simulate a random permutation in
the QROM, their resulting IND-CCA security bounds include an additive
term O(

√
q3/2128) which significantly restricts the number of QRO queries
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q an adversary can make – this is in contrast to the “collision-resistance”
term O(q3/2256) in our obtained bounds in Subsection 3.2.3 above.

In more recent work, Barbosa and Hülsing [66] reduced the IND-CCA
security of Kyber.KEM directly to OW-CPA security of a deterministic version
of the base Kyber.PKE scheme (see Footnote 13 of this chapter) in the QROM
– in contrast to our indirect approach above which relies on IND-CCA
security of an intermediate Kyber.KEM. Their reduction roughly follows
along similar lines of that in [51] for the FO ̸⊥m transform. However, their
security bounds incur two different additive “collision-resistance” terms
when compared to a single such term in our bounds (Inequality (3.2)).

3.3 summary

In this chapter, we revisited the FO-variants implemented in two NIST
PQC KEMs – i.e., Kyber, which was selected by NIST for standardization,
and FrodoKEM, which is currently recommended by the German federal
agency BSI. We argued how the differences between these FO-variants and
the standard (implicitly-rejecting) FO transforms in the literature invalidate
the QROM IND-CCA security claims of the above NIST candidates. Sub-
sequently, we re-established the concrete IND-CCA security of Kyber and
FrodoKEM in the QROM by carefully accounting for the aforementioned
differences in our formal proofs.

Given the importance placed by standards bodies on the above two
schemes, we hope that the results in this chapter provide confidence to
cryptographic scheme designers in using these schemes in applications
requiring IND-CCA security in a post-quantum setting.



4
A N O N Y M I T Y A N D R O B U S T E N H A N C E M E N T S , PA RT I :
G E N E R I C R E S U LT S

Standards bodies worldwide such as NIST, ISO, ETSI and IETF are in the
process of standardizing new post-quantum secure public-key encryption
schemes and digital signatures. Focusing on the former primitive, a main
security target of evaluation for the encryption schemes has been IND-CCA
security. This was appropriate as a starting point because it suffices for
many important use cases. However, since the post-quantum cryptographic
standards are intended to be widely used for decades to come, it is impor-
tant to study the above encryption schemes’ fitness for emerging modern
applications where security properties other than IND-CCA are required.

Two important security properties that go beyond IND-CCA security are
anonymity (or key privacy) and robustness. Anonymity was first formalised
in the public key setting in [12]. Roughly, a PKE scheme is anonymous
if a ciphertext does not leak anything about which public key was used
to create it; strong forms of anonymity equip the adversary with a de-
cryption oracle. Anonymous PKE is a fundamental component of several
deployed anonymity systems, most notably anonymous cryptocurrencies
like Zcash [67]. It is also important in building anonymous broadcast en-
cryption schemes [68, 69], anonymous credential systems [14] and auction
protocols [70]. Robustness for PKE, first formalised in [13], goes hand-
in-hand with anonymity. Suppose a party equipped with a private key
receives a ciphertext for an anonymous PKE scheme. In the absence of other
information, how does a party decide that it is the intended receiver of
that ciphertext? The standard approach is to perform trial decryption. Ro-
bustness provides an assurance that this process does not go wrong – that
the receiver is not fooled into accepting a plaintext intended for someone
else. Robustness is also important for maintaining consistency in searchable
encryption [71] and ensuring auction bid correctness [70]. Various robust-
ness notions for PKE were studied in [13], while stronger notions were
introduced in [72]; the symmetric setting was treated in [73–76].

However, there is almost no work – prior to this thesis – that shows
how to build anonymous, robust post-quantum PKE schemes. Nor is it
known whether the candidate schemes considered for standardization –

55
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in particular, candidates shortlisted by NIST in the final-round of its PQC
competition – meet these extended notions. The only directly relevant work
is by Mohassel [77], who showed a number of foundational results on
anonymity and robustness of hybrid PKE schemes built via the KEM-DEM
paradigm. Our work is influenced by Mohassel’s general approach; however,
Mohassel only considers KEMs that are directly constructed from strongly-
secure PKE schemes.1 This makes the results of [77] inapplicable to NIST
candidates, for a few reasons. First, the NIST final-round candidates are all
KEMs, not PKE schemes, so there is a basic syntactic mismatch. Second,
the base PKE schemes used within the candidate KEMs are only weakly
(i.e., OW-/IND-CPA) secure, but [77] relies on the starting PKE having
IND-CCA security. Finally, [77] only analyzes explicit rejection KEMs, for
which decapsulation can fail, but all the NIST final-round candidates except
the alternate candidate HQC [78] are implicit rejection KEMs that never
output the error symbol ⊥. This means that such implicit rejection NIST
PQC KEMs cannot be even weakly robust, while the constructions of [77]
all start from robust KEMs.

One of the negative results of [77] is that even if a KEM enjoys a strong
anonymity property, the hybrid PKE scheme that results from applying the
standard KEM-DEM paradigm may not be anonymous. This is concerning,
since it indicates that if one only focuses on KEMs in the NIST PQC
standardization process, rather than the PKE schemes that will inevitably
be built from them using the standard KEM-DEM approach, then there is
no guarantee that desired security properties will actually carry over. Thus,
one must dig into a KEM’s internals if the target is to achieve anonymous
hybrid PKE.

In fact, all the NIST final-round candidates in the KEM/PKE category
are constructed using variants of the Fujisaki-Okamato (FO) transform [1,
2, 79] as described in Chapter 3. The FO transform and variants of it have
been heavily analysed in the literature (e.g., in [4–6, 50, 55] to name a few)
in the ROM and the QROM, but insofar as we are aware, only with a view
to establishing IND-CCA security of the resulting KEMs. Only one prior
work [80] studies the relationship between FO transforms and anonymity;
it shows that the original FO transform enhances anonymity in the classical
ROM. But this result does not tell us whether the modern FO variants
used by the NIST PQC KEM candidates also enhance (or even preserve)

1 Namely, the KEM encapsulation algorithm samples a random message from the PKE scheme’s
message space and then “PKE-encrypts” it; the random message is then the KEM encapsulated
key and the corresponding PKE-encryption is the KEM ciphertext.
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anonymity and robustness properties; notably, the results of [80] are also
not in the QROM.

anonymity and robustness for the kem-dem paradigm . The
first main contribution of this chapter is a modular theory of anonymity
and robustness for PKE schemes built via the KEM-DEM paradigm. This
extends the work of [77] to general KEMs (instead of those built directly
from PKE, see Footnote 1 of this chapter). An interesting aspect that emerges
is a fundamental separation between our results for implicit and explicit
rejection KEMs. At a high level, KEMs that perform implicit rejection do
not in general transfer anonymity and robustness to PKE schemes obtained
via the KEM-DEM paradigm from the KEM component, whilst KEMs that
offer explicit rejection, and that also satisfy a mild robustness property, do.
Our positive result for explicit rejection KEMs relies on a relatively weak
anonymity notion for KEMs which we introduce here, called wANO-CCA
security. Our negative results for the implicit rejection case are proved
through the construction of specific counterexamples and are surprisingly
strong. For example, an implicit rejection KEM cannot be robust, but can
achieve a strong form of collision freeness (called SCFR-CCA security which
we define here). This is in some sense the next best thing to robustness.
We show that even this property is not sufficient, by exhibiting an implicit
rejection KEM that is anonymous (technically, ANO-CCA secure that we
define subsequently), IND-CCA and SCFR-CCA secure, and a DEM that
offers authenticated encryption (see Subsection 2.3.3) and satisfies a strong
robustness property (so-called XROB security from [73]), but where the
hybrid PKE scheme resulting from composing this KEM and DEM is not
ANO-CCA secure.

anonymity and robustness from fo transforms . Since almost
all the NIST final-round candidates are KEMs of the implicit rejection
type and we have a strong negative result there, we must dig deeper
if we wish to assure ourselves that anonymity and robustness will be
obtained for PKE schemes built from those KEMs. This introduces the
second main contribution of this chapter, wherein we analyse how the
implicitly-rejecting FO ̸⊥ transform of [4] (see Figure 3.2) lifts anonymity
and robustness (technically, collision-freeness) properties from a starting
weakly-secure PKE scheme, first to the strongly-secure KEM built by the
FO ̸⊥ transform, and then to the hybrid PKE scheme constructed using
the KEM-DEM paradigm. The culmination of this analysis is showing
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that KEMs and PKE schemes built via FO-type transforms can bypass our
negative result for implicit rejection KEMs.

application to nist pqc candidates . In the next chapter, we will
apply our above generic analysis for implicit-rejection KEMs, and the hybrid
PKE schemes derived from them, to specific schemes related to the NIST
PQC standardization process; these schemes employ FO-type transforms
that can be seen as variants of FO ̸⊥. In particular, we focus on the current
NIST PQC standard Kyber [11], the NIST fourth-round candidate Classic
McEliece [21], and the NIST third-round alternate candidate FrodoKEM [16];
it is worth mentioning that the latter two schemes are also currently recom-
mended by the German federal agency BSI for usage in the post-quantum
setting [17].

chapter organisation. Section 4.1 contains some additional pre-
liminary definitions not covered in previous chapters. Section 4.2 contains
our anonymity and robustness definitions for KEMs, which can be seen
as an additional contribution of this chapter. Sections 4.3 and 4.4 contain
our analysis of the generic KEM-DEM composition with respect to explicit
rejection and implicit rejection KEMs respectively. Section 4.5 contains our
study of anonymity and robustness enhancement for the FO ̸⊥ transform,
and the corresponding security properties of hybrid PKE schemes built
from FO ̸⊥-derived KEMs.

4.1 additional preliminaries

In this section, we define some cryptographic primitives and security no-
tions that are relevant in this (and the next) chapter (and that are not
covered in Chapter 2).

4.1.1 Public-Key Encryption, Revisited

In Subsection 2.3.1, we have already seen standard notions of OW-CPA
and IND-CPA/-CCA security for PKE schemes. We will now define their
anonymity (formally, ANO-CPA/-CCA security) and strong/weak robust-
ness (S/WROB security) properties, as introduced by Bellare et al. [12] and
Abdalla et al. [13] respectively.
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ANO-CCAAPKE
(pk0, sk0)← KGen

(pk1, sk1)← KGen

b←$ {0, 1}
(m, st)← ADec⊥ (pk0, pk1)

c∗ ← Enc(pkb, m)

b′ ← ADecc∗ (c∗, st)

return [b′ = b]

Deca(b, c)

if b /∈ {0, 1} ∨ c = a

then return ⊥
m := Dec(skb, c)

return m

SROB-CCAAPKE SCFR-CCAAPKE
(pk0, sk0)← KGen

(pk1, sk1)← KGen

c← ADec⊥ (pk0, pk1)

m0 := Dec⊥(0, c)

m1 := Dec⊥(1, c)

return [m0 ̸= ⊥∧m1 ̸= ⊥]

return [m0 = m1 ̸= ⊥]

WROB-CCAAPKE WCFR-CCAAPKE
(pk0, sk0)← KGen

(pk1, sk1)← KGen

(m, b)← ADec⊥ (pk0, pk1)

c← Enc(pkb, m)

m′ := Dec(1− b, c)

return [m′ ̸= ⊥]

return [m = m′ ̸= ⊥]

Figure 4.1: Security games for anonymity, robustness and collision freeness of
PKE schemes. Here st is some state information maintained by the
adversary A.
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Definition 16 (Anonymity of PKE [12]). Given a PKE PKE = (KGen,Enc,Dec),
we define the game w.r.t. its ANO-CCA security in Figure 4.1 and the ANO-CCA
advantage measure for adversary A against PKE as

AdvANO-CCA
PKE (A) =

∣∣∣∣Pr[ANO-CCAAPKE = 1]− 1
2

∣∣∣∣ .

If we remove the adversaries’ access to decryption oracles in the ANO-CCA security
game, we obtain the corresponding game for ANO-CPA security; the ANO-CPA
advantage measure is defined in the same fashion as that of ANO-CCA.

Definition 17 (Robustness of PKE [13]). Given a PKE PKE = (KGen,Enc,Dec),
we define the game w.r.t. its SROB-CCA (resp. WROB-CCA) security in Fig-
ure 4.1 and the SROB-CCA (resp. WROB-CCA) advantage measure for adver-
sary A against PKE as

Adv(S/W)ROB-CCA
PKE (A) = Pr[(S/W)ROB-CCAAPKE = 1].

If we remove the adversaries’ access to decryption oracles in the above security
games, we obtain the corresponding games for CPA-versions of the robustness
notions; the SROB-CPA (resp. WROB-CPA) advantage measure is defined in
the same fashion as that of SROB-CCA (resp. WROB-CCA).

Subsequent to the formalization of robustness properties of PKE schemes
in [13], Mohassel [77] introduced a relaxation of PKE robustness called
strong/weak collision freeness (S/WCFR security). Roughly speaking, a PKE
scheme is collision-free if a ciphertext does not decrypt to the same message
under two different secret keys. Mohassel used collision freeness as an
intermediate notion to provide generic transformation of any collision-free
PKE scheme to a (strongly) robust one. We formally define collision freeness
of PKE schemes below.

Definition 18 (Collision freeness of PKE [77]). Given a PKE scheme PKE =
(KGen,Enc,Dec), we define the game w.r.t. its SCFR-CCA (resp. WCFR-CCA)
security in Figure 4.1 and the SCFR-CCA (resp. WCFR-CCA) advantage
measure for adversary A against PKE as

Adv(S/W)CFR-CCA
PKE (A) = Pr[(S/W)CFR-CCAAPKE = 1].

If we remove the adversaries’ access to decryption oracles in the above security
games, we obtain the corresponding games for CPA-versions of the collision freeness
notions; the SCFR-CPA (resp. WCFR-CPA) advantage measure is defined in
the same fashion as that of SCFR-CCA (resp. WCFR-CCA).
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FROBADEM

(c, k0, k1)← A
m0 := Dec(k0, c)

m1 := Dec(k1, c)

bm := [m0 ̸= ⊥∧m0 ̸= ⊥]
bk := [k0 ̸= k1]

return [bm ∧ bk]

XROBADEM

(m0, k0, r0, k1, c1)← A
c0 := Enc(k0, m0; r0)

m1 := Dec(k1, c1)

bm := [m0 ̸= ⊥∧m0 ̸= ⊥]
bk := [k0 ̸= k1]

bc := [c0 = c1 ̸= ⊥]
return [bm ∧ bk ∧ bc]

Figure 4.2: Security games for robustness of DEMs.

4.1.2 Data Encapsulation Mechanism, Revisited

Note that in the previous subsection, we only considered robustness of
asymmetric key encryption (i.e., PKE). Farshim et al. [73] formalized different
flavors of robustness for symmetric key encryption. We will consider two such
notions, namely full robustness (FROB) and mixed robustness (XROB). At a
high level, in the security games corresponding to these robustness notions,
the adversary gets to choose the (symmetric) keys; this is in contrast to
the honestly generated (asymmetric) keys in the SROB and WROB notions
above. Formal definitions of FROB and XROB security follow.

Definition 19 (Robustness of DEMs [73]). Given DEM DEM = (KGen,Enc,Dec),
we define the game w.r.t. its FROB (resp. XROB) security in Figure 4.2 and the
FROB-CCA (resp. XROB) advantage measure for adversary A against DEM as

Adv(F/X)ROB
DEM (A) = Pr[(F/X)ROBADEM = 1].

4.2 anonymity and robustness of kems

As mentioned earlier, Mohassel [77] studied the anonymity and robustness
of KEMs. However, all of his definitions and results apply only to the
special case of KEMs that are constructed from PKE schemes in a restricted
way: namely KEMs in which the encapsulation algorithm selects a random
message for the PKE scheme and encrypts it using the PKE scheme’s
encryption algorithm. With this limitation, Mohassel provided a number of
interesting results (positive and negative) concerning the anonymity and
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robustness of KEMs and of PKE schemes constructed from them via the
KEM-DEM paradigm.

In this section, we bridge the definitional gap left by Mohassel’s work
by considering fully general definitions for KEM anonymity and robust-
ness. We will then revisit his results on these properties in context of the
KEM-DEM paradigm in later sections. As we shall see, how much can be
recovered depends in a critical way on the KEM’s behaviour with respect
to rejection of invalid ciphertexts.

We first define anonymity, or more formally, ANO-CCA security of a KEM
KEM = (KGen,Encap,Decap) via the security game between an adversary
and a challenger, as described in Figure 4.3.2

Definition 20 ((Weak) Anonymity of KEM). Given a KEM scheme KEM =
(KGen,Encap,Decap), we define the game w.r.t. its (w)ANO-CCA security in
Figure 4.3 and the (w)ANO-CCA advantage measure for adversary A against
KEM as

Adv(w)ANO-CCA
KEM (A) =

∣∣∣∣Pr[(w)ANO-CCAAKEM = 1]− 1
2

∣∣∣∣ .

If we remove the adversaries’ access to decryption oracles in the (w)ANO-CCA
security game, we obtain the corresponding game for (w)ANO-CPA security;
the (w)ANO-CPA advantage measure is defined in the same fashion as that of
(w)ANO-CCA.

In the context of KEM-DEM paradigm for constructing PKE schemes, we
will find it sufficient to work with an even weaker notion of anonymity for
KEMs, that we refer to as weak anonymity or wANO-CPA/-CCA security.
Here, the ANO- security game is modified by giving the adversary only
the ciphertext c∗ in response to its challenge query, instead of (c∗, k∗);
see Figure 4.3. We also define the corresponding adversarial advantage
measures as above.

We now shift our focus to robustness of KEMs. Specifically, we define
weak robustness (WROB) and strong robustness (SROB) security notions for
general KEMs; the corresponding security games are described in Fig. 4.3.3

2 Note that the security game differs from so-called “AI-CPA/-CCA” games (roughly speaking,
they are a hybrid of ANO- and IND- security games: AI = ANO + IND) defined for general
encryption schemes in [13], where in the latter, an adversary can have access to multiple public
keys (and some corresponding secret keys which will not result in a trivial win for the
adversary). Since we are only considering PKE schemes and KEMs in this chapter, it is not
hard to show that the two security notions are equivalent up to a factor depending on the
number of secret key queries an adversary could make (as already discussed in [13]).

3 The security game for WROB has a subtle difference from the corresponding WROB game
defined for general encryption schemes in [13] (in addition to the fact that, in the latter game,
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ANO-CCAAKEM wANO-CCAAKEM
(pk0, sk0)← KGen

(pk1, sk1)← KGen

b←$ {0, 1}
(c∗, k∗)← Encap(pkb)

b′ ← ADecapsc∗ (pk0, pk1, c∗, k∗)

b′ ← ADecapsc∗ (pk0, pk1, c∗)

return [b = b′]

Decapsa(b, c)

if b ̸∈ {0, 1} ∨ c = a

then return ⊥
k := Decap(skb, c)

return k

SROB-CCAAKEM SCFR-CCAAKEM
(pk0, sk0)← KGen

(pk1, sk1)← KGen

c← ADecaps⊥ (pk0, pk1)

k0 := Decaps⊥(0, c)

k1 := Decaps⊥(1, c)

return [k0 ̸= ⊥∧ k1 ̸= ⊥]

return [k0 = k1 ̸= ⊥]

WROB-CCAAKEM WCFR-CCAAKEM
(pk0, sk0)← KGen

(pk1, sk1)← KGen

b← ADecaps⊥ (pk0, pk1)

(c, kb)← Encap(pkb)

k1−b := Decaps(1− b, c)

return [k1−b ̸= ⊥]

return [kb = k1−b ̸= ⊥]

Figure 4.3: Security games for anonymity, robustness and collision freeness of
KEMs.
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Definition 21 (Robustness of KEM). Given KEM KEM = (KGen,Encap,Decap),
we define the game w.r.t. its SROB-CCA (resp. WROB-CCA) security in Fig-
ure 4.3 and the SROB-CCA (resp. WROB-CCA) advantage measure for adver-
sary A against KEM as

Adv(S/W)ROB-CCA
KEM (A) = Pr[(S/W)ROB-CCAAKEM = 1].

If we remove the adversaries’ access to decryption oracles in the above security
games, we obtain the corresponding games for CPA-versions of the robustness
notions; the SROB-CPA (resp. WROB-CPA) advantage measure is defined in
the same fashion as that of SROB-CCA (resp. WROB-CCA).

Note that these robustness definitions mainly apply for explicitly rejecting
KEMs that output a special symbol ⊥ on decapsulation errors (see e.g.,
KEMs derived from the FO⊥ transform in Fig. 3.2). KEMs that offer only
implicit rejection – i.e., which never output ⊥ on decapsulation (e.g., FO ̸⊥-
derived KEMs in Fig. 3.2) – cannot satisfy even the WROB-CPA notion.

In the following sections, we will revisit the KEM-DEM paradigm wherein
we focus on anonymity and robustness of the hybrid PKE scheme when
starting with corresponding anonymous and robust properties of the under-
lying KEM (and DEM). We will first consider the case of explicitly rejecting
KEMs in Section 4.3 before turning our attention to (non-robust) implicitly
rejecting KEMs in Section 4.4.

4.3 generic kem-dem composition for explicit rejection kems

With the above anonymity and robustness notions in hand, it is straightfor-
ward to extend Mohassel’s result (specifically, [77, Claim 3.3]) concerning
anonymity preservation in the KEM-DEM composition from the specific
case of KEMs constructed directly from PKEs to fully general (explicitly
rejecting) KEMs, with a non-zero decapsulation error probability; in fact,
we can also show the robustness of hybrid PKE schemes constructed from
robust KEMs via the KEM-DEM paradigm. More formally, we have the
following:

an adversary can have access to multiple public keys). The difference is that in our notion,
an adversary outputs a bit b that determines which of the two public keys (pk0, pk1) will be
used for encapsulation. This is required because the weak robustness notion is inherently
asymmetric w.r.t. the two challenge public keys, since one key is used for encapsulation (resp.
encryption in case of PKE schemes) and the other for decapsulation (resp. decryption in case
of PKE schemes).
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Theorem 3. Let PKEhy = (KGenhy,Enchy,Dechy) be a hybrid PKE scheme
obtained by composing a KEM KEM = (KGenkem,Encap,Decap) with a DEM
DEM = (KGendem,Enc,Dec). If KEM is δ-correct, then:

1. For any ANO-CCA adversary Ahy against PKEhy, there exist wANO-
CCA adversary Akem, IND-CCA adversary Akem and WROB-CPA ad-
versary Âkem against KEM, and INT-CTXT adversary Adem against DEM
such that

AdvANO-CCA
PKEhy (Ahy) ≤ AdvwANO-CCA

KEM (Akem) + 2AdvIND-CCA
KEM (Akem)

+ AdvWROB-CPA
KEM (Âkem) + AdvINT-CTXT

DEM (Adem) + δ .

The running times of Akem, Akem and Adem are the same as that of Ahy.
The running time of Âkem is independent (and less than that) of the running
time of Ahy.

2. For any WROB-ATK (resp. SROB-ATK) adversary Ahy against PKEhy,
there exists WROB-ATK (resp. SROB-ATK) adversary Akem against KEM
such that

AdvWROB-ATK
PKEhy (Ahy) ≤ AdvWROB-ATK

KEM (Akem) ,

AdvSROB-ATK
PKEhy (Ahy) ≤ AdvSROB-ATK

KEM (Akem) ,

where ATK ∈ {CPA, CCA} and the running time of Akem is that of Ahy.

Proof. (of Theorem 3.1)
Let Ahy be an adversary in the ANO-CCA game for PKEhy. Consider the

sequence of games G0 − G4 described in Figure 4.4.
Game G0: The game G0 is exactly the ANO-CCA game for PKEhy. Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
PKEhy (Ahy)

Game G1: In game G1, we first make some “cosmetic” changes. Namely,
the pair (c∗0 , k∗) is generated by running Encap(pkb) for a uniformly random
bit b before the adversary Ahy gets to choose a message m. This change does
not affect Ahy’s view in any way.

Next, we modify the oracle Dec
hy
a (b, ·) (with a ∈ {⊥, c∗}) such that if the

decryption query is (c0, c1) where c0 = c∗0 (and c1 ̸= c∗1), then the oracle
uses k∗ to decrypt c1, instead of first decapsulating c∗0 to recover a session
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Games G0 - G4

1 : (pk0, sk0), (pk1, sk1)← KGenkem

2 : b←$ {0, 1} // G1 −G4

3 : (c∗0 , k∗)← Encap(pkb) // G1 −G4

4 : k̂←$ K // G3 −G4

5 : (m, st)← ADec
hy
⊥

hy (pk0, pk1)

6 : b←$ {0, 1} // G0

7 : (c∗0 , k∗)← Encap(pkb) // G0

8 : c∗1 ← Enc(k∗, m) // G0 −G2

9 : c∗1 ← Enc(k̂, m) // G3 −G4

10 : c∗ = (c∗0 , c∗1)

11 : b′ ← ADec
hy
c∗

hy (c∗, st)

12 : return [b′ = b]

Dec
hy
a (b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 // G1 −G4

3 : k′ ← k∗ // G1 −G2

4 : k′ ← k̂ // G3

5 : return ⊥ // G4

6 : else k′ ← Decap(sk0, c0)

7 : m′ ← Dec(k′, c1)

8 : return m′

Dec
hy
a (1− b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 // G2 −G4

3 : return ⊥ // G2 −G4

4 : else k′ ← Decap(sk1, c0)

5 : m′ ← Dec(k′, c1)

6 : return m′

Figure 4.4: Games G0 – G4 for the proof of Theorem 3.
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key k′. It is not hard to see that the games G0 and G1 are equivalent unless
there is a decapsulation error w.r.t. KEM. Therefore, we have

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ δ

Game G2: In game G2, we modify the oracle Dec
hy
a (1− b, ·) (with a ∈

{⊥, c∗}) such that if the decryption query is (c0, c1) where c0 = c∗0 , then
the oracle returns ⊥. Again it is not hard to see that the games G1 and G2
are equivalent unless the following event occurs: Decap(sk1−b, c∗0) = k′ ̸= ⊥
(and Dec(k′, c1) ̸= ⊥) where Encap(pkb) = (c∗0 , k∗). And we can bound the
probability of this event occurring by the advantage of an adversary Âkem
in the WROB-CPA game of KEM. The adversary Âkem, upon receiving
public keys pk0 and pk1, simply samples a bit b uniformly at random, i.e.,
b←$ {0, 1}, and returns the bit to the WROB-CPA challenger. Hence,

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ AdvWROB-CPA
KEM (Âkem)

Game G3: In game G3, we compute c∗1 in the setup as “c∗1 = Enc(k̂, m)”,
instead of “c∗1 = Enc(k∗, m)” as in G2, for a uniformly random key k̂ (i.e.,
k̂←$ K, where K is the encapsulated key space of KEM) that is independent
of k∗. We make the appropriate modification in the Dec

hy
a (b, ·) oracle as

well, i.e., if the decryption query is (c0, c1) where c0 = c∗0 , then the oracle
uses k̂ (instead of k∗) to decrypt c1.

We now show that the difference in Ahy’s success probabilities in games
G2 and G3 can be bounded by the advantage of an adversary Akem in
the IND-CCA game of KEM. Upon receiving the input (pk, c∗, k) from its
IND-CCA challenger, where (c∗, k∗) ← Encap(pk) and k ←$ {k∗, k̂} for
a uniformly random key k̂ that is independent of k∗, Akem proceeds as
described in Figure 4.5. Note that if k is a “real” (respectively, “random”)
key, i.e., k = k∗ (resp., k = k̂), then Akem perfectly simulates game G2 (resp.,
G3) towards Ahy (also note that, to answer Ahy’s decryption queries, Akem
never has to make the forbidden query c∗(= c∗0) to its decapsulation oracle
Decapsc∗(= Decap(skb, ·)). Therefore, we have

|Pr[G3 = 1]− Pr[G2 = 1]| = |Pr[1← ADecapsc∗
kem (pk, c∗, k) | k = k̂]

− Pr[1← ADecapsc∗
kem (pk, c∗, k) | k = k∗]|

≤ 2AdvIND-CCA
KEM (Akem)

Game G4: In game G4, we modify the oracle Dec
hy
a (b, ·) such that if

the decryption query is (c0, c1) where c0 = c∗0 , then the oracle returns ⊥.
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ADecapsc∗
kem (pk, c∗, k)

1 : b←$ {0, 1}
2 : pkb = pk

3 : (pk1−b, sk1−b)← KGenkem

4 : c∗0 = c∗

5 : (m, st)← ADec
hy
⊥

hy (pk0, pk1)

6 : c∗1 ← Enc(k, m)

7 : c∗ = (c∗0 , c∗1)

8 : b′ ← ADec
hy
c∗

hy (c∗, st)

9 : return [b′ = b]

Dec
hy
a (b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 then k′ ← k

3 : else k′ ← Decapsc∗ (c0)

4 : m′ ← Dec(k′, c1)

5 : return m′

Dec
hy
a (1− b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 then return ⊥
3 : else k′ ← Decap(sk1−b, c0)

4 : m′ ← Dec(k′, c1)

5 : return m′

Figure 4.5: IND-CCA adversary ADecapsc∗
kem for the proof of Theorem 3. Here the

Decapsc∗ oracle corresponds to the Decap algorithm of KEM as in
the IND-CCA security game for KEMs; see Fig. 2.2.

It is not hard to see that the games G3 and G4 are equivalent unless the
following event occurs: Ahy makes a decryption query (c∗0 , c1) to the oracle

Dec
hy
a (b, ·) such that Dec(k̂, c1) ̸= ⊥, for a uniformly random key k̂. And

we can bound the probability of this event occurring by the advantage of
an adversary Adem in the INT-CTXT game of DEM. In the INT-CTXT game,
we are implicitly defining k̂ to be the random secret key chosen by the
challenger. The adversary Adem proceeds as described in Figure 4.6. Note
that if the aforementioned event occurs, then Adem wins its corresponding
game; also note that, Adem only makes a single encryption query to the
one-time AE-secure DEM, namely “c∗1 = Enc(m)” ( = Enc(k̂, m); see Line 5

in “AEnc,Dec

dem ”, Fig. 4.6), and then it never makes the forbidden query c∗1 to
its decryption oracle Dec ( = Dec(k̂, ·)). Hence, we have

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ AdvINT-CTXT
DEM (Adem)

Finally, we show that Ahy’s success probability in game G4 can be
bounded by the advantage of an adversary Akem in the wANO-CCA game
of KEM. Upon receiving public keys pk0 and pk1 along with the ciphertext
c∗, where (c∗, k∗)← Encap(pkb) for a uniformly random bit b chosen by the
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AEnc,Dec

dem

1 : (pk0, sk0), (pk1, sk1)← KGenkem

2 : b←$ {0, 1}
3 : (c∗0 , k∗)← Encap(pkb)

4 : (m, st)← ADec
hy
⊥

hy (pk0, pk1)

5 : c∗1 ← Enc(m)

6 : c∗ = (c∗0 , c∗1)

7 : b′ ← ADec
hy
c∗

hy (c∗, st)

8 : return ⊥

Dec
hy
a (b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 then

3 : query Dec(c1)

4 : return ⊥
5 : else k′ ← Decap(sk0, c0)

6 : m′ ← Dec(k′, c1)

7 : return m′

Dec
hy
a (1− b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 then return ⊥
3 : else k′ ← Decap(sk1, c0)

4 : m′ ← Dec(k′, c1)

5 : return m′

Figure 4.6: INT-CTXT adversary AEnc,Dec

dem for the proof of Theorem 3.

challenger, the adversary Akem proceeds as described in Figure 4.7. Observe
that Akem perfectly simulates the game G4 towards Ahy (also note that, to
answer Ahy’s decryption queries, Akem never has to make the forbidden
query c∗(= c∗0) to its decapsulation oracle Decapsc∗ . Therefore, we have
|Pr[G4 = 1]− 1/2| = AdvwANO-CCA

KEM (Akem).
Collecting all of the above bounds, we finally arrive at

AdvANO-CCA
PKEhy (Ahy) ≤ AdvwANO-CCA

KEM (Akem) + 2AdvIND-CCA
KEM (Akem)

+ AdvWROB-CPA
KEM (Âkem) + AdvINT-CTXT

DEM (Adem) + δ .

Proof. (of Theorem 3.2)
Let Ahy be an adversary in the WROB-ATK game for PKEhy. Upon

receiving two (honestly-generated) public keys pk0 and pk1, Ahy wins
the game if it returns a message and a bit, namely (m, b), such that
Dechy(sk1−b, c) ̸= ⊥ where c(= (c0, c1)) ← Enchy(pkb, m). Let (c0, kb) ←
Encap(pkb) and Decap(sk1−b, c0) = k1−b. It is easy to see that k1−b ̸= ⊥,
since Dechy(sk1−b, c) ̸= ⊥ implies Dec(k1−b, c1) ̸= ⊥. The probability of
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ADecapsc∗
kem (pk0, pk1, c∗)

1 : k̂←$ K
2 : c∗0 = c∗

3 : (m, st)← ADec
hy
⊥

hy (pk0, pk1)

4 : c∗1 ← Enc(k̂, m)

5 : c∗ = (c∗0 , c∗1)

6 : b′ ← ADec
hy
c∗

hy (c∗, st)

7 : return b′

Dec
hy
a (0, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 return ⊥
3 : else k′ ← Decap(sk0, c0)

4 : m′ ← Dec(k′, c1)

5 : return m′

Dec
hy
a (1, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : if c0 = c∗0 return ⊥
3 : else k′ ← Decap(sk1, c0)

4 : m′ ← Dec(k′, c1)

5 : return m′

Figure 4.7: wANO-CCA adversary ADecapsc∗
kem for the proof of Theorem 3. Here

the Decapsc∗ oracle corresponds to the Decap algorithm of KEM as
in the wANO-CCA security game for KEMs; see Fig. 4.3.

Ahy winning the game can then be bounded by the advantage of an adver-
sary Akem in the WROB-ATK game for KEM. Upon receiving two public
keys pk0 and pk1 from its WROB-ATK challenger, Akem forwards the keys
to Ahy and simulates the WROB-ATK game w.r.t. PKEhy (note that if ATK

= CCA, then Akem can simulate the Dec
hy
a oracles since it has access to the

Decapsa oracles in its WROB-CCA game). Once Ahy finally submits the
pair (m, b), Akem forwards the bit b to the WROB-ATK challenger. Note
that a win for Ahy implies a win for Akem.

Similarly, let Ahy be an adversary in the SROB-ATK game for PKEhy.
Upon receiving two (honestly-generated) public keys pk0 and pk1, Ahy wins
the game if it returns a ciphertext c (= (c0, c1)) such that Dechy(sk0, c) ̸= ⊥
and Dechy(sk1, c) ̸= ⊥. Let Decap(sk0, c0) = k0 and Decap(sk1, c0) = k1. It is
again easy to see that k0 ̸= ⊥ and k1 ̸= ⊥ since we have Dec(k0, c1) ̸= ⊥
and Dec(k1, c1) ̸= ⊥. Hence we can bound the winning probability of
Ahy by the advantage of an adversary Akem in the SROB-ATK game for
KEM. Upon receiving two public keys pk0 and pk1 from its SROB-ATK
challenger, Akem forwards the keys to Ahy and simulates the SROB-ATK
game w.r.t. PKEhy (note that if ATK = CCA, then Akem can simulate the
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Dec
hy
a oracles since it has access to the Decapsa oracles in its SROB-CCA

game). Once Ahy submits the final ciphertext c = (c0, c1), Akem forwards c0
to the SROB-ATK challenger. Again, a win for Ahy implies a win for Akem.

4.4 generic kem-dem composition for implicit rejection kems

Note that Theorem 3 in the previous section is only meaningful for KEMs
with explicit rejection, since for implicitly rejecting KEMs, the advantage
term AdvWROB-CPA

KEM (·) in the above security bounds can be significantly
large (in fact, the advantage will be 1 for reasonable adversaries). In this
section, we will now consider the generic KEM-DEM composition – in the
context of anonymity and robustness – when the underyling KEM can only
do implicit rejection.

4.4.1 Robustness

We first consider what can be said about robustness for hybrid PKE schemes
built from KEMs offering implicit rejection. We begin with a relaxed notion
of robustness, namely collision freeness (as introduced for the specific case
of KEMs obtained from PKEs in [77]). Informally, a scheme is said to be
collision-free if a ciphertext always decrypts to two different messages under
two different secret keys. We consider two variants, weak (WCFR) and
strong collision freeness (SCFR). We formally define both notions via the
security games described in Figure 4.3; note that the games have different
finalisation steps compared to that corresponding to the robustness (WROB,
SROB) notions.

Definition 22 (Collision freeness of KEMs). Given KEM scheme KEM =
(KGen,Encap,Decap), we define the game w.r.t. its SCFR-CCA (resp. WCFR-
CCA) security in Figure 4.3 and the SCFR-CCA (resp. WCFR-CCA) advantage
measure for adversary A against KEM as

Adv(S/W)CFR-CCA
KEM (A) = Pr[(S/W)CFR-CCAAKEM = 1].

If we remove the adversaries’ access to decryption oracles in the above security
games, we obtain the corresponding games for CPA-versions of the collision freeness
notions; the SCFR-CPA (resp. WCFR-CPA) advantage measure is defined in
the same fashion as that of SCFR-CCA (resp. WCFR-CCA).
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Now suppose we have a KEM that is SCFR-CCA (resp. WCFR-CCA)
secure and a DEM that is FROB (resp. XROB) secure. (Recall that FROB and
XROB are robustness notions for symmetric encryption schemes introduced
in [73] and defined in Figure 4.2.) Then we can show that the hybrid PKE
scheme obtained by composing these KEM and DEM schemes is SROB-CCA
(resp. WROB-CCA) secure. More formally,

Theorem 4. Let PKEhy = (KGenhy,Enchy,Dechy) be a hybrid encryption scheme
obtained by composing a KEM KEM = (KGenkem,Encap,Decap) with a DEM
DEM = (KGendem,Enc,Dec). Then for any SROB-CCA (resp. WROB-CCA) ad-
versary A against PKEhy, there exist SCFR-CCA (resp. WCFR-CCA) adversary
B against KEM and FROB (resp. XROB) adversary C against DEM such that

AdvSROB-CCA
PKEhy (Ahy) ≤ AdvSCFR-CCA

KEM (Akem) + AdvFROB
DEM (Adem) ,

AdvWROB-CCA
PKEhy (Ahy) ≤ AdvWCFR-CCA

KEM (Akem) + AdvXROB
DEM (Adem) ,

where the running times of Akem and Adem are the same as that of Ahy.

Proof. We only focus on SROB-CCA security in the following. The proof
for WROB-CCA security follows similarly via straightforward reductions.
Now let Ahy be an adversary in the SROB-CCA game for PKEhy. Upon
receiving two (honestly-generated) public keys pk0 and pk1, Ahy wins the
game if it returns a ciphertext c (= (c0, c1)) such that Dechy(sk0, c) ̸= ⊥
and Dechy(sk1, c) ̸= ⊥. Let Decap(sk0, c0) = k0 and Decap(sk1, c0) = k1. It
is easy to see that k0 ̸= ⊥ and k1 ̸= ⊥. Now we consider two (disjoint)
sub-events w.r.t. this winning event:

• k0 = k1. It is easy to see that the probability of this winning sub-
event can be bounded by the advantage of an adversary Akem in
the SCFR-CCA game for KEM. Upon receiving two public keys pk0
and pk1 from its SCFR-CCA challenger, Akem forwards the keys to
Ahy and simulates the SROB-CCA game w.r.t. PKEhy (note that Akem

can simulate the Dec
hy
a oracles since it has access to the Decapsa

oracles in its SCFR-CCA game). Once Ahy submits the final ciphertext
c = (c0, c1), Akem forwards c0 to the SCFR-CCA challenger. Note that
k0 = k1 implies a win for Akem.

• k0 ̸= k1. The probability of this winning sub-event can be bounded by
the advantage of an adversaryAdem in the FROB game for DEM.Adem
generates two key-pairs (pk0, sk0), (pk1, sk1) honestly using KGenkem

and forwards (pk0, pk1) to Ahy. Adem then simulates the SROB-CCA
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game w.r.t. PKEhy towards Ahy (again note that Adem can simulate

the Dec
hy
a oracles since it has access to the corresponding secret keys

sk0, sk1). Once Ahy submits the final ciphertext c = (c0, c1), Adem
first computes k0, k1 as above and forwards (c1, k0, k1) to the FROB
challenger. Note that Ahy winning implies Dechy(ski, c) ̸= ⊥ which in
turn implies Dec(ki, c1) ̸= ⊥. Therefore, the (sub-)event that k0 ̸= k1
implies a win for Adem.

We conclude the proof by noting that we can do a similar case-distinction
as above to argue about WROB-CCA security as well.

Note that Farshim et al. [73] provide efficient constructions of FROB-
secure and XROB-secure DEMs, meaning that the requirements for the
above theorem can be easily met. At the same time, they showed that a
DEM that achieves the standard AE notion of security is also inherently
robust, albeit w.r.t. some weaker notions compared to FROB. Namely, such
AE-secure DEMs were shown to satisfy the so-called semi-full robustness
(SFROB) notion in [73]. The SFROB notion of robustness for DEMs is a
(potentially) weaker variant of FROB where, in the corresponding security
game, the adversary does not get to choose any keys. Instead, two keys are
honestly generated and the adversary is given oracle access to encryption
and decryption algorithms under both keys. The adversary is also given
access to one of the keys, and the game is won (similar to that of FROB)
if the adversary returns a ciphertext that decrypts correctly under both
honestly generated keys.

The following theorem shows that a DEM that is only AE-secure – and
that lacks the stronger robustness properties from [73] – is incapable of
generically transforming strongly collision-free implicit rejection KEMs to
strongly robust hybrid PKE schemes.

Theorem 5. Suppose there exists a KEM that is simultaneously SCFR-CCA,
IND-CCA and ANO-CCA secure. Suppose that there exists a SUF-CMA-secure
MAC scheme and an IND-CPA secure symmetric encryption scheme (such schemes
can be built assuming only the existence of one-way functions). Suppose also that
collision-resistant hash functions exist. Then there exists an implicit rejection
KEM that is SCFR-CCA, IND-CCA and ANO-CCA secure and a DEM that is
AE-secure, such that the hybrid PKE scheme obtained from their composition is
not SROB-CCA secure.

Proof. We focus on the “Encrypt-then-MAC" (EtM) construction of a DEM
(see Section 2.3.4). Namely, let MAC = (KGenmac,Tag,Vf) be an SUF-CMA
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MAC with key space K. We construct MAC = (KGenmac,Tag,Vf) where the
only difference from MAC is that a fixed special key k is chosen uniformly
at random from K such that the verification of any tag under k verifies
successfully, i.e., Vf(k, ·) = 1. Note that MAC is also SUF-CMA secure
because the probability of sampling k uniformly at random from K can be
considered to be negligible (here we are assuming that KGenmac outputs a
uniformly random key from K which is typically the case in practice). So
by composing MAC with an IND-CPA secure symmetric encryption scheme
that never rejects invalid ciphertexts (i.e., never outputs ⊥) via the EtM
construction, we get an AE-secure DEM.

Now let KEM = (KGenkem,Encap,Decap) be a KEM that is SCFR-CCA,
IND-CCA and ANO-CCA secure. Also let H be a collision-resistant hash
function with its range being the key space of the IND-CPA symmetric en-
cryption scheme used to obtain DEM. We construct KEM = (KGen,Encap,Decap)
where the only difference from KEM is that the ciphertext space is aug-
mented by a special bitstring c. With respect to c, the decapsulation algo-
rithm works as follows: Decap(sk, c) = (H(pk), k), for any key-pair (pk, sk)
generated by KGen and the fixed MAC key k described above. It is not
hard to see that KEM is also IND-CCA and ANO-CCA secure. To argue
for the SCFR-CCA security of KEM, the only additional case to consider is
when the adversary returns the final ciphertext c. Note that Decap(sk0, c)
= Decap(sk1, c), or equivalently, (H(pk0), k) = (H(pk1), k), happens with a
negligible probability because of the collision-resistance of H.

Note that the resulting hybrid PKE scheme obtained by composing
KEM and DEM is not SROB-CCA secure. This is because an SROB-CCA
adversary, upon receiving two public keys pk0, pk1, could simply output
the ciphertext (c, (c′, t′)) where (c′, t′) is an arbitrary DEM ciphertext. The
adversary wins the SROB-CCA game because when decrypting (c, (c′, t′))
under ski (i ∈ {0, 1}) we have Decap(ski, c) = (H(pki), k). Since the use of
key k always leads to successful verification of the DEM ciphertext and the
underlying IND-CPA symmetric encryption never rejects, we thus have
that the final decryption of (c, (c′, t′)) does not return ⊥ under either of the
secret keys sk0, sk1.

4.4.2 Anonymity

Now we turn to the question of what can be said about anonymity for
hybrid PKE schemes built from KEMs offering implicit rejection. We prove
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a negative result that strengthens an analogous result of [77]. That result
showed that there exist KEMs that are ANO-CCA (and IND-CCA) secure
and XROB-secure DEMs, such that the hybrid PKE scheme resulting from
their composition is not ANO-CCA secure. Thus anonymity is not preserved
in the hybrid construction. However the KEM construction that was used to
show this negative result in [77] is not SCFR-CCA secure, which might lead
one to think that the strong collision freeness of implicit rejection KEMs
might be sufficient to preserve anonymity. Here we show this not to be true.

Before we discuss our negative result in more detail, we first define the
notion of claw-free permutations as introduced by Goldwasser et al. [81] in
the context of constructing secure digital signature schemes (also see [9,
Section 4.2]). A claw-free pair of permutations [GMR88] is a pair of trap-
door permutations4 (F1,F2), where Fi = (Gi, fi, f−1

i ) with the following
properties:

1. We have the key generation algorithms G1 = G2. Hence we denote
G = G1 = G2.

2. For any public key pk, f1(pk, ·) and f2(pk, ·) have the same domain
and range.

3. Given only pk, the probability that any efficient adversary can find a
pair (x1, x2) such that f1(pk, x1) = f2(pk, x2) is negligible. Such a pair
(x1, x2) is called a claw. It is straightforward to formalize this property
in the form of a claw-finding security game (see e.g., Lemma 11),
similar to the game-based security notions seen previously.

Theorem 6. Suppose there exists a KEM that is simultaneously SROB-CCA,
IND-CCA and ANO-CCA secure, a claw-free pair of permutations with domain
and range being the encapsulated key space of the KEM, and a collision-resistant
hash function. Suppose also that there exists a DEM that is AE-secure and XROB-
secure. Then there exists an implicit rejection KEM that is SCFR-CCA, IND-CCA
and ANO-CCA secure and a DEM that is AE-secure and XROB-secure, such that
the resulting hybrid PKE is not ANO-CCA secure.

Proof. Let KEM = (KGenkem,Encap,Decap) be a KEM that is IND-CCA,
ANO-CCA and SROB-CCA secure. Let (F1,F2) be a claw-free pair of
permutations, with the domain and range being the encapsulated key space
of KEM, and let H be a collision-resistant hash function that maps the space
of public keys of KEM to the encapsulated key space. We now construct

4 We refer the reader to [46] for a formal definition of this standard cryptographic primitive.
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Encap(pk)

(c, k)← Encap(pk)

k := f1(PK, k)

return (c, k)

Decap(sk, c)

k′ := Decap(sk, c)

if k′ = ⊥ then

k
′

:= f2(PK, H(pk))

else k
′

:= f1(PK, k′)

return k
′

Figure 4.8: Encap and Decap algorithms of KEM for the proof of Theorem 6.

KEM = (KGenkem, Encap, Decap) that is IND-CCA, ANO-CCA and SCFR-
CCA secure, but when composed with an XROB-secure DEM, does not
result in an ANO-CCA secure hybrid PKE scheme.

We first generate public parameters for KEM which are related to the
instantiation of (F1,F2). Recall that Fi = (Gi, fi, f−1

i ) where G = G1 =
G2 is the key-generator for the pair of claw-free permutations. Hence,
we generate the public parameters f1(PK, .) and f2(PK, .), where PK is
the public key of the pair of claw-free permutations. The subsequent key
generation algorithm of KEM (which is independent of the generation
of public parameters) is the same as that of KEM. The Encap and Decap
algorithms of KEM are described in Figure 4.8.

It is not hard to see that KEM is also ANO-CCA secure. To argue about
the IND-CCA security of KEM based on the IND-CCA security of KEM,
we need to observe in the reduction that when the IND-CCA challenger of
KEM returns a uniformly random key k (in the real-or-random experiment),
f1(PK, k) is a uniformly random key as well, since f1(PK, .) is a permutation.
To show the SCFR-CCA security of KEM, consider an SCFR-CCA adversary
that, after receiving two KEM public keys pk0, pk1, wins the corresponding
security game by returning a ciphertext c such that Decap(sk0, c) = Decap(sk1,
c). There are 3 cases to consider:

• Case 1: If Decap(sk0, c) ̸= ⊥ and Decap(sk1, c) ̸= ⊥, then we can break
the SROB-CCA security of KEM via a straightforward reduction.

• Case 2: If Decap(sk0, c) = ⊥ and Decap(sk1, c) = ⊥, then this would
mean that f2(PK, H(pk0)) = f2(PK, H(pk1)). This would break the
collision-resistance of H as f2(PK, .) is a permutation, and with high
probability, pk0 ̸= pk1.
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• Case 3: Without loss of generality, let Decap(sk0, c) = k ̸= ⊥ and let
Decap(sk1, c) = ⊥. This would mean that f1(PK, k) = f2(PK, H(pk1)).
But then the pair (k, H(pk1)) is a claw w.r.t. f1(PK, .) and f2(PK, .)
which breaks the underlying claw-freeness assumption of (F1,F2).

Now let DEM = (KGendem,Enc,Dec) be an AE-secure DEM which is
additionally XROB-secure. We describe and then analyse an adversary A
for the ANO-CCA security game against the hybrid PKE scheme resulting
from the composition of KEM and DEM.

Upon receiving two public keys pk0 and pk1 (along with the public pa-
rameters f1(PK, ·) and f2(PK, ·)), A selects an arbitrary message m and for-
wards the challenge message m in the ANO-CCA game. It then receives the
ciphertext c = (c0, c1) where (c0, k)← Encap(pkb) and c1 ← Enc(k, m), for a
uniformly random bit b←$ {0, 1}. Then, A asks for the decryption of cipher-
text c′ = (c0, c′1) w.r.t. sk0 where c′1 = Enc(k̂, m) with k̂ = f2(PK, H(pk0)). If
the response is ⊥, then the adversary A outputs 0; else, it outputs 1.

To see why A breaks ANO-CCA security of the hybrid PKE scheme,
consider the following 2 cases:

• b = 0: In the decryption of c′ = (c0, c′1) w.r.t. sk0, we have that
Decap(sk0, c0) = k′ where f1(PK, k′) = k. Therefore, we have f1(PK, k′) =
k ̸= f2(PK, H(pk0)) (i.e., k ̸= k̂) with a high probability owing to the
claw-freeness of (F1,F2). Since DEM is XROB-secure, we also have
Dec(k, Enc(k̂, m)) = ⊥ with a high probability. Hence, the adversary
guesses correctly by outputting 0.

• b = 1: In the decryption of c′ = (c0, c′1) w.r.t. sk0, we have that
Decap(sk0, c0) = ⊥ with a high probability because the underlying
KEM is SROB-CCA secure (note that Encap(pk1) = (c0, k′) where
f1(PK, k′) = k). Because of the way KEM was constructed, we thus
have Decap(sk0, c0) = f2(PK, H(pk0))(= k̂). Therefore, we have Dec(k̂,
Enc(k̂, m)) = m ̸= ⊥. Again, the adversary guesses correctly by out-
putting 1.

The consequence of the above theorem (and its counterexample) is that,
for implicit rejection KEMs, we cannot hope to transfer anonymity prop-
erties of the KEM to those of the hybrid PKE scheme resulting from the
standard KEM-DEM composition in a fully generic manner. To make further
progress in this direction, then, we need to look more closely at specific
KEM constructions. In the next section, we will look at such KEMs obtained
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from a standard implicitly-rejecting FO transform in the literature, namely
FO ̸⊥ as seen in Chapter 3.

4.5 anonymity and robustness of kems obtained from FO ̸⊥

As discussed in Chapter 3, Fujisaki and Okamoto [1, 2, 79] introduced
generic transformations that turn weakly secure PKE schemes into IND-
CCA secure KEMs and PKE schemes. Several distinct transforms have
emerged, each with slightly different flavours – as analyzed in [4]. One
main distinction is whether the constructed KEM offers implicit rejection
(e.g., FO ̸⊥ in [4]) or explicit rejection (FO⊥). As we have already seen, this
distinction is important in considering robustness. And since all NIST PQC
final-round candidates in the KEM/PKE category except one alternate
candidate offer implicit rejection, we mainly focus on the corresponding
implicitly-rejecting FO ̸⊥ transform. Also, since we are mainly concerned
with the post-quantum setting in this thesis, our analysis that follows will
be in the QROM.

Now given a base PKE scheme PKE = (KGen,Enc,Dec) and hash func-
tions Gr and Gk, the KEM KEM ̸⊥ = FO ̸⊥[PKE, Gr, Gk] is defined in Figure
3.2. As described in [4], the FO ̸⊥ transform “implicitly” uses a modular
transformation T that converts a OW-CPA/IND-CPA secure PKE scheme
PKE into a deterministic PKE scheme PKE1 = T [PKE, Gr] = (KGen,Enc′,Dec′)
that is secure in the presence of so-called plaintext-checking attacks.5The trans-
formation is described in Figure 4.9.

It was proved in [5] that the FO ̸⊥ transform lifts IND-CPA security
of PKE to IND-CCA security of KEM ̸⊥ in the QROM. We provide some
further enhancement results for FO ̸⊥. They demonstrate that, provided
the starting base PKE scheme PKE and the derived deterministic scheme
PKE1 satisfy some mild security assumptions on anonymity (wANO-CPA6)
and collision-freeness (SCFR-CPA) respectively, then FO ̸⊥ confers strong
anonymity (ANO-CCA) and collision-freeness (SCFR-CCA) to the final
KEM ̸⊥ in the QROM. We first focus on anonymity in the following.

5 Technically, PKE1 satisfies One-Wayness under Plaintext Checking Attacks (OW-PCA security).
At a high level, the corresponding security game is similar to that of the OW-CPA notion
(Figure 2.1) but where the adversary additionally has access to a plaintext checking oracle
Pco(c, m) which outputs 1 if the decryption of ciphertext c returns the message m and outputs
0 otherwise.

6 The wANO-CPA security notion for PKE is a weaker variant of ANO-CPA where, in the
corresponding security game, the challenger encrypts a uniformly random secret message
under either of the two honestly generated public-keys and only provides the resulting
ciphertext to the adversary, along with the generated public-keys.



4.5 anonymity and robustness of kems obtained from FO ̸⊥ 79

Enc′(pk, m)

1 : c← Enc(pk, m; Gr(m))

2 : return c

Dec′(sk, c)

1 : m′ ← Dec(sk, c)

2 : c← Enc(pk, m′; Gr(m′))

3 : if c = c′ then

4 : return m′

5 : else return ⊥

Figure 4.9: Deterministic PKE scheme PKE1 = T[PKE, Gr]; algorithm KGen for
PKE1 is the same as that of PKE.

Theorem 7. Given PKE = (KGen,Enc,Dec) is δ-correct and has message space
M. Then for any ANO-CCA adversaryA against KEM ̸⊥ = (KGen′,Encap,Decap)
issuing at most qGr and qGk queries to the quantum random oracles Gr and Gk
respectively, and at most qD queries to the (classical) decapsulation oracle, there
exist wANO-CPA adversary B and OW-CPA adversary B′ against PKE, and
SCFR-CPA adversary B′′ against PKE1 = (KGen,Enc′,Dec′) issuing at most
qGr queries to Gr, such that:

AdvANO-CCA
KEM ̸⊥

(A) ≤ AdvwANO-CPA
PKE (B) + 2(qGr + qGk )

√
AdvOW-CPA

PKE (B′)

+ qD ·AdvSCFR-CPA
PKE1

(B′′) +
4qGk√
|M|

+ 2qGr (qD + 2)
√

2δ .

Moreover, the running times of B, B′ and B′′ are the same as that of A.

Proof. Denote ΩGr , ΩGk , ΩG′k
and ΩG′′k

to be the set of all functions Gr :
M → R, Gk : C → K, G′k : M×C → K and G′′k : M → K respectively,
where R is the set of random coins used in Enc, K is the encapsulated key
space of KEM ̸⊥ and C is the ciphertext space of PKE/KEM ̸⊥.

Let A be an adversary in the ANO-CCA game for KEM ̸⊥ issuing at most
qD (classical) queries to the oracle Decapsc∗ , and qGr and qGk quantum
queries to the random oracles Gr and Gk respectively. Consider the sequence
of games G0 − G8 described in Figure 4.10.

Game G0: The game G0 is exactly the ANO-CCA game for KEM ̸⊥ ( =
FO ̸⊥[PKE, Gr, Gk]). Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
KEM ̸⊥

(A)

Games G0.5 − G1: In game G0.5, we modify the decapsulation oracle
Decapsc∗(0, ·) such that Grej

0k (c) is returned instead of Gk(s0, c) for an in-
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Games G0 - G8

1 : (pk0, sk′0), (pk1, sk′1)← KGen′

2 : Gr ←$ ΩGr

3 : Ggood
r ← ΩGr // Sampling distribution

// described in description of G2 below.

4 : Gr := Ggood
r // G2 - G5

5 : Gacc
0k , Gacc

1k , Grej
0k , Grej

1k ←$ ΩGk

6 : G2k ←$ ΩG′k
; G3k ←$ ΩG′′k

7 : b←$ {0, 1}
8 : m∗ ←$M
9 : r∗ ← Gr(m∗) // G0 −G6

10 : r∗ ←$R // G7 −G8

11 : c∗ := Enc(pkb, m∗; r∗)

12 : k∗ ← Gk(m
∗, c∗) // G0 −G6

13 : k∗ ←$ K // G7 −G8

14 : inp← (pk0, pk1, (c∗, k∗))

15 : i←$ {1, . . . , qGr + qGk} // G8

16 : run AGr ,Gk ,Decapsc∗ (inp) until

i-th query to Gr × G3k // G8

17 : measure the i-th query and let the

outcome be m′ // G8

18 : return [m′ = m∗] // G8

19 : b′ ← AGr ,Gk ,Decapsc∗ (inp)

20 : return [b′ = b]

Gk(m, c)

1 : if c = c∗ return G3k(m) // G5 - G8

2 : if Enc(pk0, m; Gr(m)) = c // G3 - G8

3 : return Gacc
0k (c) // G3 - G8

4 : if Enc(pk1, m; Gr(m)) = c // G3 - G8

5 : return Gacc
1k (c) // G3 - G8

6 : return G2k(m, c)

Decapsa(0, c) // c ̸= a

1 : return Gacc
0k (c) // G3.5 - G8

2 : Parse sk′0 = (sk0, s0)

3 : m′ = Dec(sk0, c)

4 : if Enc(pk0, m′, Gr(m′)) = c then

5 : return Gk(m
′, c)

6 : else return Gk(s0, c) // G0

7 : else return Grej
0k (c) // G0.5 - G3

Decapsa(1, c) // c ̸= a

1 : return Gacc
1k (c) // G4 - G8

2 : Parse sk′1 = (sk1, s1)

3 : m′ = Dec(sk1, c)

4 : if Enc(pk1, m′, Gr(m′)) = c then

5 : return Gk(m
′, c)

6 : else return Gk(s1, c) // G0 - G0.5

7 : else return Grej
1k (c) // G1 - G3.5

Figure 4.10: Games G0 – G8 for the proof of Theorem 7.
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valid ciphertext c. Then in game G1, we modify the decapsulation oracle
Decapsc∗(1, ·) such that Grej

1k (c) is returned instead of Gk(s1, c) for an in-

valid ciphertext c. Here the random oracles Grej
0k and Grej

1k are not directly
accessible to A.

We can use Lemma 2 w.r.t. the pseudorandomness of Gk(s0, ·) and
Gk(s1, ·), with PRF keys s0, s1 ←$M respectively, to obtain the following
via straightforward reductions:

|Pr[G0.5 = 1]− Pr[G0 = 1]| ≤
2qGk√
|M|

,

|Pr[G1 = 1]− Pr[G0.5 = 1]| ≤
2qGk√
|M|

.

Game G2: In game G2, we change the random oracle Gr such that it
uniformly samples “good” random coins w.r.t. the key-pairs (pk0, sk0) and
(pk1, sk1), similar to the “G3 → G4” game-hop in our proof of Theorem 1

above. Namely, given a PKE key-pair (pk, sk) and a message m ∈ M, define

Rgood((pk, sk), m) = {r ∈ R | Dec(sk,Enc(pk, m; r)) = m}

and Rbad((pk, sk), m) = R \Rgood((pk, sk), m). For notational convenience,
let KP0 = (pk0, sk0) and KP1 = (pk1, sk1). Now we define the oracle

Ggood
r ← ΩGr such that Ggood

r (m) is sampled according to a uniform dis-
tribution in (Rgood(KP0, m) ∩ Rgood(KP1, m)); in G2, we are essentially

replacing the oracle Gr with Ggood
r .

At a high level, our following analysis of the current G1 → G2 game-hop
can be seen as an extension of that of the “G1 → G2” game-hop in the
proof of [5, Theorem 1]; the latter analysis only considers a single key-
pair, whereas we extend its arguments to two key-pairs. For the sake of
completeness, we provide the full analysis below.

Note that the task of distinguishing between G1 and G2 is equivalent
to that of distinguishing between the oracles Gr and Ggood

r . To be specific,
for any two fixed key-pairs KP0, KP1 generated by KGen, we can construct
an oracle distinguisher B between Gr and Ggood

r such that BGr (KP0,KP1)

simulates G1, and BGgood
r (KP0,KP1) simulates G2. That is, we have∣∣Pr[G2 = 1 |KP0,KP1 ← KGen]− Pr[G1 = 1 |KP0,KP1 ← KGen]

∣∣
=

∣∣Pr[1← BGgood
r (KP0,KP1)]− Pr[1← BGr (KP0,KP1)]

∣∣
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CN(KP0,KP1)

1 : Pick a 2qG-wise function f

2 : b′′ ← BĜ(KP0,KP1)

3 : return b′′

Ĝ(m)

1 : if N(m) = 0

2 : Ĝ(m) = Sample(Rgood(KP0, m) ∩Rgood(KP1, m); f (m))

3 : else

4 : Ĝ(m) = Sample(Rbad(KP0, m) ∪Rbad(KP1, m); f (m))

5 : return Ĝ(m)

Figure 4.11: Algorithm CN for the proof of Theorem 7. Sample(Y) is a proba-
bilistic algorithm that returns a uniformly distributed y ←$ Y and
Sample(Y ; f (m)) denotes the deterministic execution of Sample(Y)
using explicit randomness f (m).

Now any such distinguisher between Gr and Ggood
r can be converted to a

distinguisher between N0 and N1 where N0 :M→ {0, 1} is an oracle such
that N0(m) is sampled according to the Bernoulli distribution Bδ(KP0,KP1,m)

7,
where

δ(KP0,KP1, m) =
|Rbad(KP0, m) ∪Rbad(KP1, m)|

|R|
and N1 : M → {0, 1} is an oracle that always outputs 0 for any input
m. Specifically, for any distinguisher BĜ(KP0,KP1) with Ĝ ∈ {Gr, Ggood

r },
we can construct a distinguisher CN(KP0,KP1) with N ∈ {N0, N1} that is
described in Figure 4.11.

Note that if N = N0, then Ĝ = Gr, and if N = N1, then Ĝ = Ggood
r .

Therefore, for any two fixed key-pairs KP0, KP1 generated by KGen, we
have Pr[1 ← CN0(KP0,KP1)] = Pr[1 ← BGr (KP0,KP1)] and also we have

7 That is, Pr[N0(m) = 1] = δ(KP0,KP1, m) and Pr[N0(m) = 0] = 1− δ(KP0,KP1, m).
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Pr[1 ← CN1(KP0,KP1)] = Pr[1 ← BGgood
r (KP0,KP1)]. Hence, from Lemma

5, we get

|Pr[1← BGgood
r (KP0,KP1)]− Pr[1← BGr (KP0,KP1)]|

= |Pr[1← CN1(KP0,KP1)]− Pr[1← CN0(KP0,KP1)]|

≤ 2qGr

√
δ(KP0,KP1)

where δ(KP0,KP1) = maxm∈M δ(KP0,KP1, m). Hence, conditioned on two
fixed key-pairs KP0, KP1 generated by KGen, we obtain

|Pr[G2 = 1 |KP0,KP1 ← KGen]− Pr[G1 = 1 |KP0,KP1 ← KGen]|

≤ 2qGr

√
δ(KP0,KP1)

Averaging over KP0 ← KGen, KP1 ← KGen, and applying Jensen’s inequal-
ity w.r.t. the square root function, we get

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2qGr

√
E[δ(KP0,KP1)]

where the expectation is taken over KP0 ← KGen, KP1 ← KGen. From
the notion of δ-correctness, note that for a key-pair (pk, sk) ← KGen,
E[δ((pk, sk))] = δ, where we have δ((pk, sk)) = maxm∈M δ((pk, sk), m)

and δ((pk, sk), m) = Rbad(pk,sk,m)
R . We now show that for two key-pairs

KP0 = (pk0, sk0), KP1 = (pk1, sk1), we have δ(KP0,KP1) ≤ 2δ. First note
that, for a particular message m, δ(KP0,KP1, m) ≤ δ(KP0, m) + δ(KP1, m),
and hence, δ(KP0,KP1) ≤ δ(KP0) + δ(KP1). We now have the following

E[δ(KP0,KP1)] = ∑
KP0
KP1

Pr[KP0]Pr[KP1]δ(KP0,KP1)

≤ ∑
KP0
KP1

Pr[KP0]Pr[KP1](δ(KP0) + δ(KP1))

= ∑
KP1

(
∑
KP0

Pr[KP0]δ(KP0)
)

Pr[KP1]

+ ∑
KP0

(
∑
KP1

Pr[KP1]δ(KP1)
)

Pr[KP0]

= ∑
KP1

δ · Pr[KP1] + ∑
KP0

δ · Pr[KP0] = 2δ
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where Pr[KPi] denotes the probability of the fixed key-pair KPi being
generated by KGen. We also used the fact that the key-pairs KP0, KP1 are
generated independently. Thus, we finally obtain

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2qGr

√
2δ

Game G3: In game G3, we implicitly divide the Gk-queries (m, c) into three
disjoint categories: (1) Enc(pk0, m; Gr(m)) = c, (2) Enc(pk0, m; Gr(m)) ̸= c =
Enc(pk1, m; Gr(m)), and (3) Enc(pk0, m; Gr(m)) ̸= c ∧ Enc(pk1, m; Gr(m)) ̸=
c. We then respond to the queries from the respective categories with
Gacc

0k (c), Gacc
1k (c) and G2k(m, c) respectively, where Gacc

0k and Gacc
1k are internal

random oracles not directly accessible to the adversary A. Because Gr
samples “good” random coins, it is not hard to see that the encryption
functions Enc(pk0, .; Gr(·)) and Enc(pk1, .; Gr(·)) are injective, and hence, the
output distributions of the Gk-oracle in the games G2 and G3 are equivalent.
Therefore,

Pr[G3 = 1] = Pr[G2 = 1]

Game G3.5: In game G3.5, we change the Decapsc∗(0, ·) oracle such that
there is no need for the secret key sk′0. Namely, Gacc

0k (c) is returned for the
decapsulation of ciphertext c w.r.t. sk′0. Let m′ = Dec(sk0, c). Consider the
following two cases:

• Enc(pk0, m′; Gr(m′)) = c: In this case, the Decapsc∗(0, ·) oracles in
games G3 and G3.5 return the same value Gacc

0k (c).

• Enc(pk0, m′; Gr(m′)) ̸= c: In game G3, as the random oracle Grej
0k is

independent of all other oracles, the output Grej
0k (c) is uniformly ran-

dom in the adversary A’s view. In game G3.5, the only way A gets
prior access to the function Gacc

0k is if it made a Gk-query (m′′, c) such
that Enc(pk0, m′′; Gr(m′′)) = c. But because Gr samples good random
coins, we have Dec(sk0, c) = m′′ = m′ leading to a contradiction of
“Enc(pk0, m′; Gr(m′)) ̸= c”. Hence, such a prior access is not possible
and Gacc

0k (c) will also be a uniformly random value in A’s view.

As the output distributions of the Decapsc∗(0, ·) oracle in G3 and G3.5 are
the same in both cases, we have

Pr[G3.5 = 1] = Pr[G3 = 1]

Game G4: In game G4, we change the Decapsc∗(1, ·) oracle such that
Gacc

1k (c) is returned for the decapsulation of any ciphertext c w.r.t. sk1. The
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analysis here follows quite similarly to that of the previous game-hop except
that this simulation of the Decapsc∗(1, ·) oracle – without the secret key
sk′1 – will fail if A asks for the decapsulation of a ciphertext ĉ such that
m′ = Dec(sk1, ĉ) and Enc(pk0, m′; Gr(m′)) = Enc(pk1, m′; Gr(m′)) = ĉ. In
this peculiar case, Gacc

0k (ĉ) is returned in G3 and Gacc
1k (ĉ) is returned in G4.

We bound the probability of this peculiar event (i.e., A asking for the
decapsulation of ĉ w.r.t. sk′1) by the advantage of an SCFR-CPA adver-
sary B′′ against the deterministic scheme PKE

good
1 = T[PKE, Ggood

r ]. First

note that, because Ggood
r samples good random coins, for such ciphertexts

ĉ we have Dec(sk0, ĉ) = Dec(sk1, ĉ) = m′ and Enc(pk0, m′; Ggood
r (m′)) =

Enc(pk1, m′; Ggood
r (m′)) = ĉ. Note that such a ĉ corresponds to winning the

SCFR-CPA game of PKEgood
1 . So we can construct a corresponding SCFR-

CPA adversary B′′ that has access to the (non-ideal) “good” random oracle
Ggood

r . Upon receiving two public keys pk0 and pk1, B′′ simulates G4 for
the adversary A and maintains a list of A’s classical queries to the oracle
Decapsc∗(1, ·) (note that B” can simulate the decapsulation oracle as in G4
even with no access to the corresponding secret keys sk0 and sk1). Then B′′
chooses a ciphertext uniformly at random from the list and forwards it as
the final message to the SCFR-CPA challenger of PKEgood

1 .
Let Pr[pec] be the probability of this peculiar event, denoted as “pec”,

occurring. We have the games G3.5 and G4 to be equivalent unless the event
pec occurs. From the construction of the SCFR-CPA adversary B′′ above, it
is not hard to see that AdvSCFR-CPA

PKE
good
1

(B′′) ≥ 1
qD
· Pr[pec]. Hence, we have

|Pr[G4 = 1]− Pr[G3.5 = 1]| ≤ Pr[pec] ≤ qD ·AdvSCFR-CPA
PKE

good
1

(B′′)

Using a similar analysis as the game-hop G1 → G2, by replacing Ggood
r with

an ideal random oracle Gr w.r.t. the SCFR-CPA adversary B′′, we obtain

|Pr[G4 = 1]− Pr[G3.5 = 1]| ≤ qD · (AdvSCFR-CPA
PKE1

(B′′) + 2qGr

√
2δ)

Game G5: In game G5, we answer Gk-queries of the form (m, c∗) with
G3k(m), where G3k is an independent random oracle. Since Gr samples good
randomness, there are at most two Gk-queries worth considering, namely
(m0, c∗) and (m1, c∗), where Enc(pk0, m0; Gr(m0)) = c∗ and Enc(pk1, m1; Gr(m1)) =
c∗ (for the other Gk-queries (m′, c∗), where m′ /∈ {m0, m1}, we are replacing
the oracle outputs G2k(m′, c∗) in G4 with G3k(m′) in G5). W.r.t. these two
queries, the Gk oracle would return Gacc

0k (c∗), Gacc
1k (c∗) respectively in G4,
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AGr×G3k (m∗, (r∗, k∗))

1 : (pk0, sk′0), (pk1, sk′1)← KGen′

2 : Gacc
0k , Gacc

1k ←$ ΩGk ; G2k ←$ ΩG′k

3 : b←$ {0, 1}
4 : c∗ ← Enc(pkb, m∗; r∗)

5 : b′ ← AGr ,Gk ,Decapsc∗ (pk0, pk1, (c∗, k∗))

6 : return [b′ = b]

Gk(m, c)

1 : if c = c∗return G3k(m)

2 : if Enc(pk0, m; Gr(m)) = c

3 : return Gacc
0k (c)

4 : if Enc(pk1, m; Gr(m)) = c

5 : return Gacc
1k (c)

6 : return G2k(m, c)

Decapsa(i, c) // i ∈ {0, 1} ∧ c ̸= a

1 : return Gacc
ik (c)

Figure 4.12: Algorithm AGr×G3k for the proof of Theorem 7.

and G3k(m0), G3k(m1) respectively in G5. The adversary A’s view would
be identical even after this change because the random values Gacc

0k (c∗),
Gacc

1k (c∗) are only accessible to A via the Gk-oracle in G4, and in particu-
lar, not through the Decapsc∗ oracle since c∗ is a forbidden decapsulation
query. Hence in G5, we are effectively replacing (at most) two uniformly
random values that can only be accessed via the Gk-oracle by A with two
other uniformly random values (the simpler case of m0 = m1 would follow
similarly). Since the output distributions of the Gk-oracle in the games G4
and G5 are equivalent, we have

Pr[G5 = 1] = Pr[G4 = 1]

Game G6: In game G6, we reset Gr to be an ideal random oracle, i.e.,
Gr(m) now returns uniformly random coins from R instead of returning
only “good” random coins. Since this change, in a sense, is the “inverse” of
the game-hop G1 → G2, by using a similar analysis, it is not hard to obtain

|Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2qGr

√
2δ

Game G7: In the setup of game G7, we replace the hash evaluations “r∗ ←
Gr(m∗)” and “k∗ ← Gk(m∗, c∗)(= G3k(m∗))” with “r∗ ←$R” and “k∗ ←$ K”
respectively. That is, r∗ and k∗ are now uniformly random values that are
generated independently of the random oracles Gr and G3k. We use Lemma
3 to bound the difference in the success probabilities of A in G6 and G7. Let
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A be an oracle algorithm that has quantum access to the random oracle
Gr × G3k, where (Gr × G3k)(m) = (Gr(m), G3k(m)). Figure 4.12 describes
AGr×G3k ’s operation on input (m∗, (r∗, k∗)). Note that the algorithm AGr×G3k

makes at most qGr + qGk number of queries to the random oracle Gr × G3k
to respond to A’s oracle queries8. With this construction of A, note that
P1

A = Pr[G6 = 1] and P2
A = Pr[G7 = 1], where P1

A and P2
A are as defined

in Lemma 3 w.r.t. the algorithm AGr×G3k ; to analyse the corresponding
probability PB in Lemma 3, we define game G8 (see Fig. 4.10) such that
PB = Pr[G8 = 1]. From Lemma 3, we thus have

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 2(qGr + qGk )
√

Pr[G8 = 1].

We now bound the success probability of A in G7 by the advantage of
an adversary B in the wANO-CPA game of PKE. Upon receiving public
keys pk0 and pk1 along with the ciphertext c∗, where c∗ := Enc(pkb, m∗; r∗)
for uniformly random bit b ←$ {0, 1}, (secret) message m∗ ←$ M and
randomness r∗ ←$R chosen by the challenger, B proceeds as follows:

• Runs A as a subroutine as in game G7.

• Uses a 2qGr -wise independent function and four different 2qGk -wise in-
dependent functions to simulate the random oracles Gr, Gacc

0k , Gacc
1k , G2k

and G3k respectively in A’s view, as noted in Lemma 1. The random
oracle Gk is simulated in the same way as in G7.

• Answers decapsulation queries using the oracles Gacc
ik (i ∈ {0, 1}) as

in G7.

• For A’s challenge query, samples a uniformly random key k∗ ←$ K
and responds with (pk0, pk1, (c∗, k∗)).

• After obtaining a bit b′ from A, forwards b′ to its wANO-CPA chal-
lenger as the final message.

It is easy to see that |Pr[G7 = 1]− 1
2 | = AdvwANO-CPA

PKE (B). Now we bound
the success probability of A in G8 by the advantage of an adversary B′
in the OW-CPA game of PKE. Upon receiving a public-key pk along with
a ciphertext c∗, where c∗ := Enc(pk, m∗; r∗) for uniformly random (secret)
message m∗ ←$M and randomness r∗ ←$R chosen by the challenger, B′
proceeds as follows:

8 Similar to the reduction in our proof of Theorem 1, if AGr×G3k wants to respond to A’s
Gk-query, then AGr×G3k prepares a uniform superposition of all states in the output register
corresponding to Gr (see Footnote 3 of Chapter 3, and also [50]).
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• Runs A as a subroutine as in game G8.

• Uses three different 2qGk -wise independent functions to simulate the
random oracles Gacc

0k , Gacc
1k and G2k respectively, two different 2(qGr +

qGk )-wise independent functions to simulate the random oracles Gr
and G3k respectively in A’s view, as noted in Lemma 1. Also evaluates
A’s Gr- and Gk-queries using the oracle Gr × G3k; the random oracle
Gk is simulated in the same way as in G8,

• Answers decapsulation queries using the oracles Gacc
ik (i ∈ {0, 1}) as

in G8.

• For A’s challenge query, first samples a uniformly random bit b←$

{0, 1} and sets pkb = pk. Then generates a key-pair (pk1−b, sk1−b)←
KGen, samples a uniformly random key k∗ ←$ K and responds with
(pk0, pk1, (c∗, k∗)). (By doing this, note that we have c∗ := Enc(pkb, m∗; r∗)
in A’s view.)

• Selects i ←$ {1, . . . , qGr + qGk}, measures the i-th query to oracle
Gr × G3k and returns the outcome m′.

Again, it is not hard to see that Pr[G8 = 1] ≤ AdvOW-CPA
PKE (B′). Hence by

collecting all of the above bounds, we arrive at

AdvANO-CCA
KEM ̸⊥

(A) ≤ AdvwANO-CPA
PKE (B) + 2(qGr + qGk )

√
AdvOW-CPA

PKE (B′)

+ qD ·AdvSCFR-CPA
PKE1

(B′′) +
4qGk√
|M|

+ 2qGr (qD + 2)
√

2δ .

Having dealt with anonymity in the above theorem, we now turn to
studying robustness. As discussed above, implicit rejection KEMs cannot
formally satisfy robust (i.e., SROB, WROB) properties. Fortunately however,
we establish the next best thing (according to our definitions), i.e., strong
collision freeness of the KEMs constructed using FO ̸⊥. Towards our result,
we require the following claw-freeness property of quantum random oracles.

Lemma 11 ([60, Lemma 2.4]). There is a universal constant C (< 648) such that
the following holds: Let ΩH0 and ΩH1 be the set of all functions H0 : X0 → Y
and H1 : X1 → Y respectively, such that |X0| ≤ |X1|. Let H0 ←$ ΩH0 and
H1 ←$ ΩH1 . For any quantum algorithm AH0,H1 making q quantum queries to
H0 and H1, we have

Pr[H0(x0) = H1(x1) | (x0, x1)← AH0,H1 ] ≤ C(q + 1)3

|Y| .
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For the following result, we in-fact need a weaker property than the one
described in the above lemma; namely, it’s hard for an adversary to return
a value x ∈ X0 ∩ X1 such that H0(x) = H1(x). We leave the derivation of
the corresponding upper-bound as an open problem.

Theorem 8. Given PKE = (KGen,Enc,Dec) is δ-correct and has message space
M. Then for any SCFR-CCA adversaryA against KEM ̸⊥ = (KGen′,Encap,Decap)
issuing at most qGr and qGk queries to the quantum random oracles Gr and Gk
respectively, and at most qD queries to the (classical) decapsulation oracle, there
exists an SCFR-CPA adversary B against PKE1 = (KGen,Enc′,Dec′) issuing at
most qGr queries to Gr such that

AdvSCFR-CCA
KEM ̸⊥

(A) ≤ qD ·AdvSCFR-CPA
PKE1

(B) +
C(qGk + 1)3

|K|

+
4qGk√
|M|

+ 2qGr (qD + 2)
√

2δ .

Here K is the encapsulated key space of KEM ̸⊥ and C (< 648) is the constant
from Lemma 11. The running time of B is the same as that of A.

Proof. Denote ΩGr , ΩGk , ΩG′k
to be the set of all functions Gr : M → R,

Gk : C → K, G′k :M×C → K respectively, where R is the set of random
coins used in Enc and C is the ciphertext space of PKE/KEM ̸⊥.

Let A be an adversary in the SCFR-CCA game for KEM ̸⊥ issuing at most
qD (classical) queries to the oracle Decaps⊥, and qGr and qGk quantum
queries to the random oracles Gr and Gk respectively.

The structure of the proof is very similar to that of Theorem 7. Basically
we do the same sequence of game-hops as in the proof of Theorem 7 until
the point where we can simulate the decapsulation oracles Decaps⊥(i, ·)
(i ∈ {0, 1}) without requiring the corresponding secret keys sk′i. In the final
game-hop, we reset Gr to be an ideal random oracle.

To be specific, we do the sequence of game-hops G0 → G5 as described
in Figure 4.13. By a similar analysis as that of the proof of Theorem 7

w.r.t. these game-hops, it is not hard to obtain

|Pr[G0 = 1]−Pr[G5 = 1]| ≤ qD ·AdvSCFR-CPA
PKE1

(B)+
4qGk√
|M|

+ 2qGr (qD + 2)
√

2δ

Note that the game G0 is exactly the SCFR-CCA game for KEM ̸⊥. Hence,
we have

Pr[G0 = 1] = AdvSCFR-CCA
KEM ̸⊥

(A)
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Games G0 - G5

1 : (pk0, sk′0), (pk1, sk′1)← KGen′

2 : Gr ←$ ΩGr

3 : Ggood
r ← ΩGr // Sampling distribution

// described in the proof below.

4 : Gr := Ggood
r // G2 - G4

5 : Gacc
0k , Gacc

1k , Grej
0k , Grej

1k ←$ ΩGk

6 : G2k ←$ ΩG′k

7 : inp← (pk0, pk1)

8 : c← AGr ,Gk ,Decaps⊥ (inp)

9 : k0 := Decaps⊥(0, c)

10 : k1 := Decaps⊥(1, c)

11 : return [k0 = k1 ̸= ⊥]

Gk(m, c)

1 : if Enc(pk0, m; Gr(m)) = c // G3 - G5

2 : return Gacc
0k (c) // G3 - G5

3 : if Enc(pk1, m; Gr(m)) = c // G3 - G5

4 : return Gacc
1k (c) // G3 - G5

5 : return G2k(m, c)

Decapsa(0, c) // c ̸= a

1 : return Gacc
0k (c) // G3.5 - G5

2 : Parse sk′0 = (sk0, s0)

3 : m′ := Dec(sk0, c)

4 : if Enc(pk0, m′; Gr(m′)) = c then

5 : return Gk(m
′, c)

6 : else return Gk(s0, c) // G0

7 : else return Grej
0k (c) // G0.5 - G3

Decapsa(1, c) // c ̸= a

1 : return Gacc
1k (c) // G4 −G5

2 : Parse sk′1 = (sk1, s1)

3 : m′ := Dec(sk1, c)

4 : if Enc(pk1, m′; Gr(m′)) = c then

5 : return Gk(m
′, c)

6 : else return Gk(s1, c) // G0 - G0.5

7 : else return Grej
1k (c) // G1 - G3.5

Figure 4.13: Games G0 – G5 for the proof of Theorem 8.
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Coming to the game G5, note that the adversary A wins the game if it
outputs a ciphertext c such that Decaps⊥(0, c) = Decaps⊥(1, c). Because of
the modification of the Decaps⊥(i, ·) oracles, this winning condition trans-
lates to Gacc

0k (c) = Gacc
1k (c), where Gacc

0k and Gacc
1k are independent quantum-

accessible random oracles. Note that in this case, (c, c) is a claw w.r.t. the
pair of QROs Gacc

0k : C → K and Gacc
1k : C → K. Hence we can bound the

success probability of A in G5 by the advantage of an adversary B′ against
the claw-finding game w.r.t. the instance (Gacc

0k , Gacc
1k ). B′ proceeds as follows:

• Runs A as a subroutine as in game G5.

• Uses a 2qGr -wise independent function and a 2qGk -wise independent
function to perfectly simulate the random oracles Gr and G2k in A’s
view, as noted in Lemma 1. Also uses the pair of oracles f0 : C → K
and f1 : C → K – which is the instance of the claw-finding game – to
simulate the oracles Gacc

0k and Gacc
1k respectively.

• Answers decapsulation queries using the oracles fi(·) (i ∈ {0, 1}) as
in G4.

• After obtaining a ciphertext c from A, forwards (c, c) as the claw
w.r.t. ( f0, f1).

Note that B′ makes at most qGk queries to the pair ( f0, f1). It is easy to

see that Pr[G5 = 1] ≤ C(qH+1)3

|K| from Lemma 11. Hence, we finally get

AdvSCFR-CCA
KEM ̸⊥

(A) ≤ qD ·AdvSCFR-CPA
PKE1

(B) +
C(qGk + 1)3

|K|

+
4qGk√
|M|

+ 2qGr (qD + 2)
√

2δ .

From Theorems 7 and 8, we see that by applying the FO ̸⊥ transformation
to weakly secure (i.e., OW-CPA) and weakly anonymous (i.e., wANO-
CPA) PKE schemes, with an additional assumption of strong collision
freeness against chosen plaintext attacks of the deterministic version of
the underlying PKE scheme (PKE1 = T[PKE, Gr]), not only do we obtain
strongly secure KEMs (i.e., IND-CCA security) but also KEMs that are
strongly anonymous (i.e., ANO-CCA) and are strongly collision-free against
chosen ciphertext attacks (SCFR-CCA) in the QROM.
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At the same time, we showed a negative result in Theorem 6. It essentially
shows that starting with a KEM that is IND-CCA, ANO-CCA and SCFR-
CCA secure does not generically result in a strongly anonymous (ANO-CCA)
hybrid PKE scheme via the KEM-DEM composition. Nonetheless, we are
able to show the following positive result for KEMs obtained via the FO ̸⊥

transform. We only need a weak additional property of the underlying PKE
scheme, namely that it be γ-spread (see Definition 3).

Theorem 9. Let PKEhy = (KGenhy,Enchy,Dechy) be a hybrid PKE scheme
obtained by composing KEM ̸⊥ = (KGen′,Encap,Decap) with a one-time se-
cure AE scheme DEM = (KGendem,Encdem,Decdem). Suppose the base PKE =
(KGen,Enc,Dec) underlying KEM ̸⊥ is δ-correct and γ-spread (with message space
M). Then for any ANO-CCA adversary Ahy against PKEhy issuing at most
qGr and qGk queries to the quantum random oracles Gr and Gk respectively, there
exist ANO-CCA adversary Akem and IND-CCA adversary Akem against KEM ̸⊥,
WCFR-CPA adversary B against PKE1 = (KGen,Enc′,Dec′), and INT-CTXT
adversary Adem against DEM such that:

AdvANO-CCA
PKEhy (Ahy) ≤ AdvANO-CCA

KEM ̸⊥
(Akem) + 2AdvIND-CCA

KEM ̸⊥
(Akem) + 2−γ

+ AdvWCFR-CPA
PKE1

(B) + 2AdvINT-CTXT
DEM (Adem) +

4qGk√
|M|

+ 4qGr

√
δ .

Moreover, the running times of Akem, Akem and Adem are the same as that of
Ahy. The running time of B is independent (and less than that) of the running
time of Ahy.

Proof. The structure of the proof is quite similar to that of Theorem 3.1,
except for some initial game-hops. Here we will focus on these hops.

Denote ΩGr , ΩGk and ΩG′k
to be the set of all functions Gr : M → R,

Gk : M× C → K and G′k : C → K respectively, where R is the set of
random coins used in Enc, K is the encapsulated key space of KEM ̸⊥ and
C is the ciphertext space of PKE/KEM ̸⊥. Let Ahy be an adversary in the
ANO-CCA game for PKEhy issuing at most qGr and qGk quantum queries to
the random oracles Gr and Gk respectively. Consider the sequence of games
G0 − G6 described in Figure 4.14.

Game G0: The game G0 is equivalent to the ANO-CCA game for PKEhy

(the only “cosmetic” change is that the uniform random bit b is sampled
before the adversary Ahy gets to choose a message mhy). Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
PKEhy (Ahy).
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Games G0 - G5

1 : (pk0, sk0), (pk1, sk1)← KGen

2 : s0 ←$M; s1 ←$M
3 : sk′0 := (sk0, s0), sk′1 := (sk1, s1)

4 : Gr ←$ ΩGr ; Gk ←$ ΩGk ; G′k ←$ ΩG′k

5 : b←$ {0, 1}

6 : Ggood
r ← ΩGr // Sampling distribution

// described in description of G0.3 above.

7 : Gr := Ggood
r // G0.3 −G0.6

8 : m∗ ←$M // G0.3 −G5

9 : c∗0 := Enc(pkb, m∗; Gr(m∗)) // G0.3 −G5

10 : k∗ ← Gk(m
∗, c∗0) // G0.3 −G5

11 : krej ← Gk(s1−b, c∗0) // G2

12 : krej ← G′k(c
∗
0) // G3 −G4

13 : (mhy, st)← AGr ,Gk ,Dec
hy
⊥

hy (pk0, pk1)

14 : m∗ ←$M // G0

15 : c∗0 := Enc(pkb, m∗; Gr(m∗)) // G0

16 : k∗ ← Gk(m
∗, c∗0) // G0

17 : c∗1 ← Encdem(k∗, mhy) // G0 −G5

18 : c∗ = (c∗0 , c∗1)

19 : b′ ← AGr ,Gk ,Dec
hy
c∗

hy (c∗, st)

20 : return [b′ = b]

Dec
hy
a (b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : Parse sk′b = (skb, sb)

3 : if c0 = c∗0 // G0.6 −G5

4 : k′ := k∗ // G0.6 −G5

5 : else // G0.6 −G5

6 : m′ := Dec(skb, c0)

7 : if Enc(pkb, m′; Gr(m′)) = c0

8 : k′ ← Gk(m
′, c0)

9 : else k′ ← Gk(sb, c0)

10 : mhy′ := Decdem(k′, c1)

11 : return mhy′

Dec
hy
a (1− b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : Parse sk′1−b = (sk1−b, s1−b)

3 : if c0 = c∗0 // G2 −G5

4 : k′ := krej // G2 −G3

5 : return ⊥ // G4 −G5

6 : else // G0.6 −G5

7 : m′ := Dec(sk1−b, c0)

8 : if Enc(pk1−b, m′; Gr(m′)) = c0

9 : k′ ← Gk(m
′, c0)

10 : else k′ ← G′k(c0) // G3 −G4

11 : else k′ ← Gk(s1−b, c0)

12 : mhy′ := Decdem(k′, c1)

13 : return mhy′

Figure 4.14: Games G0 – G5 for the proof of Theorem 9.
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Game G0.3: In game G0.3, we first make some “cosmetic” changes. Namely,
the pair (c∗0 , k∗) resulting from running Encap(pkb) for a uniformly random
bit b is generated before the adversary Ahy gets to choose a message mhy.
This change does not affect Ahy’s view in any way.

Next, we change the random oracle Gr such that it uniformly samples
“good” random coins w.r.t. the key-pair (pkb, skb), as seen in the proof of The-
orem 7. Specifically, define the oracle Ggood

r ← ΩGr such that Ggood
r (m) is

sampled according to a uniform distribution in Rgood((pkb, skb), m). Hence

in G0.3, we replace the oracle Gr with Ggood
r . By using a similar analysis as

the game-hop “G1 → G2” in the proof of Theorem 7 (in fact, the analysis
would be simpler in this case since we have to consider a single key-pair
(pkb, skb) instead of two), it is not hard to obtain

|Pr[G0.3 = 1]− Pr[G0 = 1]| ≤ 2qGr

√
δ.

Game G0.6: In game G0.6, we modify the oracle Dec
hy
a (b, ·) (with a ∈

{⊥, c∗}) such that if the decryption query is (c0, c1) where c0 = c∗0 (and
c1 ̸= c∗1), then the oracle uses k∗ to decrypt c1, instead of first decapsulating
c∗0 to recover a session key k′. It is not hard to see that the games G0 and G1
are equivalent since Gr samples good random coins, and hence, there is no
decapsulation error w.r.t. KEM ̸⊥. Therefore, we have

Pr[G0.6 = 1] = Pr[G0.3 = 1].

Game G1: In game G1, we reset Gr to be an ideal random oracle, i.e.,
Gr(m) now returns uniformly random coins from R instead of returning
only “good” random coins. Since this change, in a sense, is the “inverse” of
the game-hop G0 → G0.3, by using a similar analysis, it is not hard to obtain

|Pr[G1 = 1]− Pr[G0.6 = 1]| ≤ 2qGr

√
δ.

Game G2: In game G2, we modify the oracle Dec
hy
a (1− b, ·) such that if

the decryption query is (c0, c1) where c0 = c∗0 , then the oracle uses krej(=
Gk(s1−b, c∗0)) to decrypt c1. Here krej is the key returned if Decap(sk′1−b, c∗0)
would have resulted in an “implicit rejection”. Thus, it is not hard to see
that the games G1 and G2 are equivalent unless c∗0 is not (implicitly) rejected
by the Decap(sk′1−b, ·) operation, or in other words, if the following event
occurs: Enc(pk1−b, m′; Gr(m′)) = c∗0 where Enc(pkb, m∗; Gr(m∗)) = c∗0 and
Dec(sk1−b, c∗0) = m′ (for m∗ ←$M).

There are two sub-events to consider w.r.t. the above event:
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1. m′ ̸= m∗: In this case, the random oracle Gr on a new query m′ will
return uniformly random coins r ←$ R. Since PKE is γ-spread, for
the key-pair (pk1−b, sk1−b) and message m′, we have the re-encryption
check, namely “Enc(pk1−b, m′; r) = c∗0”, to hold with probability ≤
2−γ, for uniformly random r.

2. m′ = m∗: In this case, we can bound the probability of the sub-event
occurring by the advantage of an adversary B in the WCFR-CPA game
of PKE1 (= T[PKE, Gr]). The adversary B, upon receiving public-keys
pk0 and pk1, simply samples a bit b and message m∗ uniformly at
random, i.e., b ←$ {0, 1} and m∗ ←$ M, and returns (m, b) to the
WCFR-CPA challenger (note that only a single query is made to Gr
on m∗ in the security experiment).

Hence,

|Pr[G2 = 1]− Pr[G1 = 1]| ≤ AdvWCFR-CPA
PKE1

(B) + 2−γ.

Note that for the ANO-CCA security of KEM ̸⊥, we anyway rely on the
SCFR-CPA security of the deterministic PKE1.

Game G3: In game G3, we modify the decryption oracle Dec
hy
a (1− b, ·)

such that the key G′k(c0) is used to decrypt the DEM ciphertext c1 instead
of Gk(s1−b, c0) where the KEM ciphertext c0 was implicitly rejected by
the Decap(sk′1−b, ·) operation; G′k is an internal random oracle not directly
accessible by the adversary Ahy. We also generate the key krej as “krej ←
G′k(c

∗
0)” (instead of “krej ← Gk(s1−b, c∗0)”).

Here we can use Lemma 2 w.r.t. pseudorandomness of the QRO Gk(s1−b, ·),
with PRF key s1−b ←$ M, to obtain the following via a straightforward
reduction:

|Pr[G3 = 1]− Pr[G2 = 1]| ≤
2qGk√
|M|

.

Game G4: In game G4, we modify the oracle Dec
hy
a (1− b, ·) such that

if the decryption query is (c0, c1) where c0 = c∗0 , then the oracle returns
⊥. It is not hard to see that the games G3 and G4 are equivalent unless
the following event occurs: Ahy makes a decryption query (c∗0 , c1) to the

oracle Dec
hy
a (1− b, ·) such that Decdem(krej, c1) ̸= ⊥. And we can bound

the probability of this event occurring by the advantage of an INT-CTXT
adversary Adem against DEM, again via a straightforward reduction.

Note that in games G3 and G4, the internal random oracle G′k is never

queried on c∗0 (particularly, in the Dec
hy
a (1− b, ·) oracle) except for defining



96 anonymity and robust enhancements , part i : generic results

krej(← G′k(c
∗
0)) in the setup. This is equivalent to having krej be a uniformly

random key independent of the oracle G′k, i.e., krej ←$ K. Hence in the
INT-CTXT game of DEM, we can implicitly define krej to be the random
secret key chosen by the challenger. The adversary Adem then proceeds
by first sampling a bit b ←$ {0, 1} and locally generating the key pairs
(pkb, skb), (pk1−b, sk1−b) ← KGen. It then simulates the game G4 towards
Ahy by generating the intermediate values (e.g., sb, m∗, c∗0 , k∗, etc.) as in

Fig. 4.14 and simulating the decryption oracles Dec
hy
a oracles using the

secret keys skb, sk1−b.9 The main thing that is relevant for the reduction

is, when Ahy makes a query (c∗0 , c1) to Dec
hy
a (1− b, ·), Adem forwards c1

to its own decryption oracle in the INT-CTXT game w.r.t. DEM. If the
aforementioned event occurs (i.e., Decdem(krej, c1) ̸= ⊥), then Adem wins
its game (also note that, Adem has no need to make any encryption oracle
queries in the INT-CTXT game in order to simulate G4 towards Ahy). Hence,
we have

|Pr[G4 = 1]− Pr[G3 = 1]| ≤ AdvINT-CTXT
DEM (Adem).

Game G5 In game G5, we (re-)modify the decryption oracle Dec
hy
a (1− b, ·)

such that the key Gk(s1−b, c0) is used to decrypt the DEM ciphertext c1
instead of G′k(c0) where the KEM ciphertext c0 was implicitly rejected
by the Decap(sk′1−b, ·) operation. In a sense, we are reverting the changes
introduced in the G2 → G3 hop. Hence, by using a similar analysis as that
hop (and note that now, the key krej is not used anymore), it is not hard to
obtain

|Pr[G5 = 1]− Pr[G4 = 1]| ≤
2qGk√
|M|

Compared to the proof of Theorem 3.1, we have effectively used the
sequence of games G0 − G5 to arrive at a point where we modified the
oracle Dec

hy
a (1− b, ·) such that if the decryption query is (c∗0 , c1), the oracle

returns ⊥; this particular point is the hybrid game “G2” in the proof of

9 Adem uses a 2qGr -wise and a 2qGk -wise independent function to simulate the QROs Gr and Gk
respectively. It also simulates the internal random oracle G′k classically towards Ahy, e.g., via
“lazy sampling”, since G′k is only used to process classical queries c0 in the game G4; recall that
we consider only classical decryption queries in the QROM.
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Theorem 3.1. Now doing a similar sequence of game-hops from that point
on, namely “G2 → G4”, in the current setting starting from G5, we arrive at

AdvANO-CCA
PKEhy (Ahy) ≤ AdvANO-CCA

KEM ̸⊥
(Akem) + 2AdvIND-CCA

KEM ̸⊥
(Akem) + 2−γ

+ AdvWCFR-CPA
PKE1

(B) + 2AdvINT-CTXT
DEM (Adem) +

4qGk√
|M|

+ 4qGr

√
δ .

4.5.1 Extension to FO ̸⊥m

In this section, we have mainly focused on the FO ̸⊥ transform. Coming
to FO ̸⊥m , the only difference between this transform and FO ̸⊥ is that, in
the former, the encapsulated keys are computed as “k ← Gk(m)” – in
contrast to “k← Gk(m, c)” done in the latter (see Figures 3.1 and 3.2). But
this is a significant difference in the context of extending our anonymity
and robustness enhancing results of FO ̸⊥ above to FO ̸⊥m . The reason, at a
very high level, is that in our security proofs on FO ̸⊥ – e.g., Theorem 7 on
ANO-CCA security – we needed to simulate two different decapsulation
oracles without possessing the corresponding secret keys. And crucially, we
used the pair (m, c) as a “handle” in our proofs to answer the decapsulation
queries, made out to different secret-keys, in a consistent way. The lack of
this feature in FO ̸⊥m leads us to believe that our results above do not extend
to this transform in a straightforward manner.

However, in subsequent work, Xagawa [60] was able to establish anonymity
(and robustness) enhancing properties of FO ̸⊥m in the QROM using an alter-
native proof strategy. Instead of directly analyzing the ANO-CCA security
of FO ̸⊥m -derived KEMs and hybrid PKE schemes, he considered a stronger
security notion called strong pseudorandomness (or, SPR-CCA security). A
KEM10 is said to be SPR-CCA secure if, roughly speaking, an adversary
cannot distinguish a real ciphertext/encapsulated-key pair (c∗, k∗) from a
random pair (c′, k′) where c′ is a random ciphertext and k′ is a random key
(see Subsection 5.3.1 for a formal definition of SPR-CCA security where
we also need to consider a simulator to specify what we mean by a “ran-
dom” ciphertext c′). Moreover, it was shown in [60] that SPR-CCA security
straightforwardly implies ANO-CCA security.

Now the key insight used by Xagawa in [60] is that since SPR-CCA
security is a “single key-pair” notion (i.e., a single key-pair is generated by

10 The analogous definition for PKE schemes follows straightforwardly.
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the challenger in its security game) unlike the “double key-pair” ANO-CCA
notion, security proofs corresponding to the former notion would involve
simulating a single decapsulation oracle – as opposed to two decapsulation
oracles w.r.t. the latter notion – which in turn precludes the use of any
“handle” as discussed above. Hence as a consequence, he was also able to
establish anonymity and robustness of NTRU [23] – a third-round NIST PQC
finalist – in the QROM, since the scheme uses FO ̸⊥m in its KEM construction.
Looking ahead, we will use Xagawa’s framework to establish post-quantum
anonymity and robustness of Kyber in the next chapter.

4.6 summary

In this chapter, we provided a generic analysis of anonymity and robustness
– two important “beyond IND-CCA” properties – for PKE schemes built via
the KEM-DEM paradigm. We first presented general security definitions
of anonymity and robustness for the KEM primitive, which we hope will
be of independent interest. Then we divided our above generic analysis
depending on whether the underlying KEM, in the KEM-DEM composition,
offered implicit rejection or explicit rejection. We showed that implicit
rejection KEMs, in general, do not transfer their anonymity and robustness
to the corresponding KEM-DEM hybrid PKE schemes; on the other hand,
explicit rejection KEMs do transfer the above properties.

Shifting our attention to NIST’s PQC standardization process, we note
that most candidate KEMs considered there offer implicit rejection while us-
ing variants of the Fujisaki-Okamoto transform in their construction. Hence,
we analyzed an implicitly-rejecting variant – namely, the FO ̸⊥ transform
– with respect to the anonymity and robustness properties, and showed
that FO ̸⊥ does confer these properties to the constructed KEM; notably,
our analysis is in the QROM, in line with the post-quantum setting consid-
ered in this thesis. We also showed that such a class of implicit rejection
KEMs obtained via the FO ̸⊥ transform does transfer anonymity and robust-
ness to the hybrid PKE schemes in the KEM-DEM composition – thereby
overcoming the above generic impossibility result.



5
A N O N Y M I T Y A N D R O B U S T E N H A N C E M E N T S , PA RT I I :
A P P L I C AT I O N T O N I S T P Q C C A N D I D AT E S

After motivating the importance of anonymity and robustness for public-
key encryption schemes in the previous chapter, we now apply our above
generic analysis for implicit rejection KEMs to specific schemes related to
the NIST PQC standardization process which employ FO-type transforms
that are variants of FO ̸⊥. In particular, we focus on the NIST fourth-round
candidate Classic McEliece [21], the NIST third-round alternate candidate
FrodoKEM [16], and the current NIST PQC standard Kyber [11]. It is worth
pointing out that the first two schemes are currently also recommended by
the German federal agency BSI for usage in the post-quantum setting [17].

To provide an overview of our results, for Classic McEliece, we show that
the hybrid PKE resulting from applying the standard KEM-DEM paradigm
is not strongly robust (i.e., SROB secure). In fact, we can show that, for
any plaintext m, it is possible to construct a single ciphertext c such that
c always decrypts to m under any Classic McEliece private key. The con-
struction of c does not even need the public key! The complete details of
our “robustness attack” is presented in Section 5.1. But we stress that our
attack does not indicate any problem with IND-CCA security of Classic
McEliece, but it does expose its limitations as a general-purpose KEM for
the broad set of applications that can be envisaged for NIST public key
algorithms. Since our FO ̸⊥-related results in Chapter 4 on anonymity of
KEMs and PKE schemes built from them depend on robustness properties,
Classic McEliece’s limitations in this regard present a barrier to establish-
ing its anonymity using our techniques (but do not preclude other proof
techniques – e.g., the ones used by Xagawa to directly prove anonymity of
Classic McEliece in [60]).

Coming to FrodoKEM, the news is better. We provide positive results
on anonymity and robustness properties of its KEM and the hybrid PKE
schemes derived from it. Towards these results, we have to adapt our
generic analysis on FO ̸⊥ to the actual transform used by FrodoKEM. To be
more specific, FrodoKEM uses an FO-type transform – namely, FOfrodo –
which differs significantly from FO ̸⊥. And as argued in Chapter 3, these
differences invalidate direct application of known IND-CCA security results
on the standard FO ̸⊥ transform to FOfrodo in the QROM. Despite this, we
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KGen′

1 : (pk, sk)← KGen

2 : s←$ Fn
2

3 : sk′ ← (sk, pk, s)

4 : return (pk, sk′)

Encap(pk)

1 : m← FixedWeight()

2 : c := Enc(pk, m)

3 : k← H1(m, c)

4 : return (c, k)

Decap(sk′, c)

1 : Parse sk′ = (sk, pk, s)

2 : m′ ← Dec(sk, c)

3 : if m′ ̸= ⊥ then

4 : return H1(m′, c)

5 : else return H0(s, c)

Figure 5.1: The FOcm transform used by Classic McEliece (CM). Here we have
(KGen′,Encap,Decap) describing the CM KEM and (KGen,Enc,Dec)
describing the base PKE scheme (also referred to as “the one-way
function” in [21]). The algorithm FixedWeight() outputs a uniformly
random n-bit vector m ∈ Fn

2 with a fixed Hamming weight t (see [21]
for a formal description); here t is a CM parameter. We also have hash
functions H0 and H1 with 256-bit outputs.

were able to re-establish post-quantum IND-CCA security of FrodoKEM in
that chapter using an alternative approach. As will be seen in Section 5.2,
a similar approach also allows us to establish anonymity and robustness
properties for FrodoKEM in the QROM.

Finally, for Kyber, we were also able to establish post-quantum anonymity
and robustness of the new NIST PQC standard as well as the hybrid PKE
schemes derived from it. To prove anonymity in particular, instead of
adapting our generic analysis on FO ̸⊥ in the previous chapter to Kyber, we
work with Xagawa’s proof techniques that were used to establish anonymity
of Classic McEliece, NTRU [23] and other important NIST PQC KEMs in [60].
To provide some more context, in the same paper [60], Xagawa was unable
to extend his techniques to show anonymity of Kyber because of the fact that
the FO-type transform used by Kyber (i.e., FOkyber) hashes some additional
intermediate values in its internal computations when compared to the
standard FO transforms of [4]. At a high level, we salvage Xagawa’s proof
strategy by adapting our “wrapper-based” approach of Chapter 3 which
was used to establish IND-CCA security of Kyber in the QROM. The formal
details are presented in Section 5.3. Coming to robustness, our positive
analysis of Kyber is quite similar to that of FrodoKEM, which in-turn is
based on our generic analysis of “FO ̸⊥-derived” KEMs in Chapter 4.
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5.1 classic mceliece

Classic McEliece (CM) is a code-based KEM which relies on one-wayness
(i.e., OW-CPA security) of the so-called McEliece cryptosystem [82] for its
post-quantum IND-CCA security. As defined in its fourth round NIST PQC
specification [21], CM applies a slight variant of the FO ̸⊥ transform, which
we call FOcm, to its starting deterministic base PKE scheme (see Fig. 5.1).
The main difference between FO ̸⊥ and FOcm is that in the latter transform,
there is no re-encryption check during decapsulation (see Lines 4 and 5 in
“Decap(sk′, c)”, Fig. 3.2). However, the base PKE scheme of CM implicitly
performs this re-encryption check in its decryption routine (see Line 4 in [21,
Section 4.4]). In particular, this means that our generic results on anonymity
and robustness conferred by FO ̸⊥ – namely, Theorems 7 and 8 – apply to
FOcm in a straightforward manner.

Therefore, the only thing that would remain to be analyzed is whether the
base PKE scheme used by CM satisfies the pre-requisite security properties
of Theorems 7 and 8: namely, the notions of wANO-CPA and SCFR-CPA.
As we show next, the base PKE scheme used by CM fails to be collision-free
in a striking way that rules out the application of these results. This failure
also propagates to the hybrid PKE schemes built from CM KEM via the
standard KEM-DEM paradigm.

5.1.1 Specification of the Base PKE Scheme

As mentioned above, the base PKE scheme used by CM is deterministic.
At a high level, to encrypt a message m ∈ Fn

2 , the scheme first encodes
m as a binary column vector e of length n and fixed Hamming weight t.
Then it computes ciphertext c = He ∈ F

(n−k)
2 where we have the matrix

H = (In−k | T) ∈ F
(n−k)×n
2 with T ∈ F

(n−k)×k
2 essentially being the public

key;1 also k is another CM parameter. More specifically, H is the parity
check matrix of an error correcting code whose error correcting capacity is
at least t. Decryption is done by using the private key to rewrite matrix H
in such a way that efficient decoding can be performed to recover e with
perfect correctness. In fact, the base PKE scheme of CM is closely related to
the Niederreiter variant of the McEliece PKE scheme [83].

1 Here In−k denotes the identity matrix of dimension (n− k)× (n− k).
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5.1.2 Collision-Freeness of the Base PKE Scheme

Recall that we would require the base PKE scheme of CM to satisfy the
SCFR-CPA property in order to make use of our generic results concerning
the FO ̸⊥ transform. This property is crucial in the CPA → CCA security
proofs where we have to simulate the decapsulation oracles under two
different secret keys without access to the keys. As we will show now, the
base PKE scheme is not SCFR-CPA secure, nor even WCFR-CPA secure. In
fact, we can go further and exhibit a strong robustness failure of the base
PKE scheme, and explain how it leads to robustness failures in the CM
KEM and hybrid PKE schemes built from it.

Consider any error vector e with Hamming weight t in which the t 1’s in e
are concentrated in the first n− k bit positions of e (in all the parameter sets
used in Classic McEliece, n− k = mt ≥ t, for a positive integer m, so this is
always possible). We call such an e concentrated. Note that any concentrated
e can be written as e =

( en−k
0k

)
with en−k of length n− k and 0k being the

vector of k zeros. Since encryption is done by computing c = He, and H is
of the form (In−k | T), it is easy to see that c is a fixed vector independent
of the T component of H: namely, He = en−k which depends only on the
first n− k bit positions of e.

Note that this property holds independent of the public key of the base
PKE scheme (i.e., the matrix T). Thus there is a class of messages of the
base PKE scheme (of size (n−k

t )) for which the resulting ciphertext c can
be predicted as a function of the message without even knowing the public
key. By correctness of the base PKE scheme of CM, such ciphertexts must
decrypt to the selected message under any private key of the scheme. Hence,
it is immediate that this property can be used to violate SCFR-CPA and
WCFR-CPA security of the base PKE scheme.

5.1.3 Robustness of Classic McEliece and Corresponding Hybrid PKE Schemes

The base PKE scheme is used to construct the CM KEM according to proce-
dure described in Figure 5.1. This means that the CM KEM encapsulations
are also of the form c = He; meanwhile the encapsulated keys are set as
k = H1(e, c) where H1 is a hash function. The CM KEM performs implicit
rejection, so one cannot hope for robustness. However, one might hope for
some form of collision-freeness. Our analysis above shows that the CM
KEM does not provide even this, since when e is concentrated, c = He
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decapsulates to H1(e, c) under any CM private key. Hence, technically the
CM KEM is not SCFR-CPA secure.2

Finally, one might ask about the robustness of hybrid PKE schemes built
by combining the CM KEM with a DEM using the standard KEM-DEM
paradigm. Again, such a PKE scheme cannot be strongly collision free (and
therefore not strongly robust either), since it is trivial using our observations
to construct a hybrid PKE ciphertext that decrypts correctly under any CM
private key to any fixed choice of message m (without even knowing the
public key). To see this, simply consider hybrid ciphertexts of the form
(ckem, cdem) = (He,Encdem(k, m; r)) where e ∈ Fn

2 is concentrated, k =
H1(e, ckem) is the symmetric key encapsulated by the CM KEM component
ckem = He of the hybrid ciphertext, and r is some fixed randomness for
the DEM scheme (KGendem,Encdem,Decdem). It is not hard to see that such
hybrid ciphertexts decrypt to the freely chosen message m under any CM
private key.

Robustness could plausibly be conferred on this hybrid PKE scheme by
including a hash of the public key in the key derivation step. However CM
public keys are large, so this would have a negative effect on performance.
Robustness is not conferred in general by replacing the DEM with an
AEAD3 scheme and including the hash of the public key in the associated
data to create a “labelled DEM”. This is easy to see by adapting the counter-
example construction used in the proof of Theorem 5.

5.1.4 Related Work

The analysis above shows that we cannot hope to establish anonymity
or robustness of the CM KEM or hybrid PKE schemes built from it via
the standard KEM-DEM paradigm using the sequence of results in the
previous chapter. But this does not rule out more direct approaches to
proving anonymity. In fact, Xagawa [60] was able to establish anonymity
(i.e., ANO-CCA security) of Classic McEliece4 and its corresponding hybrid

2 But it is plausible that the CM KEM is WCFR-CPA secure since in an honest execution of
“Encap(pk)” (see Fig. 5.1), the probability that FixedWeight() outputs a concentrated e is quite
low; more precisely, the probability is (n−k

t )/(n
t). However, we consider a formal WCFR-CPA

security analysis of CM to be beyond the scope of this chapter.
3 Authenticated Encryption with Associated Data; see [46] for a formal definition of this

primitive.
4 Technically, Xagawa analyzed the NIST PQC third-round specification of CM which included

an additional “plaintext confirmation” hash in the ciphertext. Namely, encapsulations of third-
round CM KEM were of the form c = (He, H2(e)) where H2(e) is the plaintext confirmation
hash; decapsulation then involved recomputing this hash and checking it against the input
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PKE schemes in the QROM using the strong pseudorandomness framework
discussed in Subsection 4.5.1. He also proposed a modification to Classic
McEliece which makes it strongly collision free (i.e., SCFR-CCA secure) in
the QROM.

But it is worth pointing out that Xagawa relied on assumptions (namely,
the so-called “modified PR-key” and “modified Decisional Syndrome Decoding”
assumptions [60]) which are technically different than the ones which CM
relies on for its IND-CCA security. This is in contrast to our subsequent
anonymity analysis of FrodoKEM and Kyber wherein we rely on the same
assumptions as used by these schemes for their post-quantum IND-CCA
security: namely, the LWE and MLWE hardness assumptions respectively.

Finally, coming back to Classic McEliece, we are in a situation where
the hybrid PKE schemes derived from it are anonymous (as shown by Xa-
gawa [60]) but not robust (as shown in this section). Since we argued earlier
on in Chapter 4 that robustness is important to ensure basic communication
correctness w.r.t. anonymous PKE schemes (i.e., to prevent any ambiguity
between senders and receivers), it would be interesting to find further
applications for the CM hybrid PKE schemes where a lack of robustness
does not hurt.

5.2 frodokem

As seen in Section 3.1, FrodoKEM uses the “FOfrodo” transform on its
base FrodoPKE scheme (see Figure 3.3) which differs significantly from
the standard FO ̸⊥ transform. These significant deviations not only act
as a barrier to applying generic results in the literature on IND-CCA
enhancement of FO ̸⊥ to FOfrodo in the QROM, as argued in that section,
but also act as an obstacle to applying our generic results in Section 4.5 on
anonymity and SCFR enhancement of FO ̸⊥ to FrodoKEM’s variant of the
FO transform.

Fortunately, our approach to repairing FrodoKEM’s IND-CCA security
proof in Section 3.1 also allows us to derive proofs of anonymity and
SCFR enhancement for FOfrodo with similar tightness in the QROM. As
will be seen below, in contrast to our generic analysis of FO ̸⊥ in Section 4.5
(Theorems 7 and 8) wherein we had to rely on SCFR-CPA security of the
base PKE scheme – specifically, its deterministic version – we instead rely on
hardness of the claw-finding problem in a quantum setting (see Lemma 11).

ciphertext. However, it is easy to see that Xagawa’s third-round analysis also extends to the
current fourth-round CM specification in a straightforward fashion.
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5.2.1 Anonymity of FrodoPKE

In our following anonymity (i.e., ANO-CCA security) analysis of FrodoKEM,
and the hybrid PKE schemes derived from it, we rely on certain weak se-
curity properties of the base FrodoPKE scheme – i.e., ANO-CPA security5

and IND-CPA security. As noted in Subsection 3.1.3 above, IND-CPA se-
curity of FrodoPKE scheme was rigorously established in [16, Subsection
5.1.4]. Upon a close inspection of the corresponding security proof, which
is the same as that of [84, Theorem 3.2], it basically proves a stronger
property of FrodoPKE = (KGen,Enc,Dec) while relying on the LWE hard-
ness assumption: namely, given (pk, sk) ← KGen and any valid message
m, the distribution {(pk,Enc(pk, m))} is computationally indistinguishable
from {(pk, c∗)} where c∗ is a uniformly random value from FrodoPKE’s
ciphertext space which is independent of pk. It is then not hard to see
how we can use this property to also establish ANO-CPA security of
FrodoPKE. Namely, in the ANO-CPA security game w.r.t. FrodoPKE, given
two honestly-generated public keys pk0, pk1 and a message m chosen by
an adversary, it cannot distinguish (pk0, pk1,Enc(pk0, m)) from (pk0, pk1, c∗)
where c∗ is a uniformly random ciphertext independent of pk0 and pk1.
Similarly, using the above property, the adversary also cannot distinguish
(pk0, pk1, c∗) from (pk0, pk1,Enc(pk1, m)). It follows that the adversary can-
not distinguish between the encryptions of m under pk0 and pk1, thereby
establishing the ANO-CPA security of FrodoPKE. Hence, we have:6

Lemma 12 (informal). FrodoPKE is ANO-CPA secure, assuming hardness of
the LWE problem.

5.2.2 Anonymity and Collision-Freeness of FrodoKEM

We now formally establish the stronger properties of ANO-CCA and
SCFR-CCA security for FrodoKEM = FOfrodo[FrodoPKE, G, H, H′] (see Fig-
ure 3.3) in the QROM. Below we define CollH

FrodoPKE as probability of the
event “H(pk0) = H(pk1)” where pk0 and pk1 are two honestly-generated

5 Technically, the weaker notion of wANO-CPA security (see Footnote 6 of Chapter 4) would
have sufficed – as seen in our generic ANO-CCA security analysis of FO ̸⊥-based KEMs
(Theorem 7). But we go on to prove the stronger ANO-CPA security for FrodoPKE. It would be
interesting to find applications for FrodoPKE where its wANO-CPA security does not suffice
by ANO-CPA does.

6 It is not hard to derive concrete security bounds on the ANO-CPA security of FrodoPKE using
the results in [16, Subsection 5.1.4]. However we consider it out-of-scope of this chapter since
we are mainly concerned with “CPA→CCA” style enhancement results.
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FrodoPKE public-keys. Given the space of FrodoPKE’s public keys is suffi-
ciently large, if the hash function H is sufficiently collision-resistant, then
CollH

FrodoPKE can be considered to be negligible.7

Theorem 10. Given FrodoPKE = (KGen,Enc,Dec) is δ-correct and γ-spread,
for any ANO-CCA adversary A against FrodoKEM = (KGen′,Encap,Decap)
issuing at most qG and qH′ queries to the quantum random oracles G and H′

respectively, there exist an ANO-CPA adversary B and IND-CPA adversary B′
against FrodoPKE such that

AdvANO-CCA
FrodoKEM(A) ≤ AdvANO-CPA

FrodoPKE(B) + 2(qG + qH′)

√
AdvIND-CPA

FrodoPKE(B′) +
1

2256

+ CollH
FrodoPKE +

C(qG + 1)3 + 1
2256 +

4qH′

2128 + 2−γ + 8qG
√

δ,

where C (< 648) is the constant from Lemma 11, and the running times of B and
B′ are the same as that of A.

Proof. The structure of the proof is similar to that of Theorem 7. Denote ΩG2 ,
ΩG, ΩH and ΩH′ to be the set of all functions G2 : {0, 1}512 → {0, 1}512, G :
{0, 1}256 → {0, 1}256, H : {0, 1}256 ∪ C → {0, 1}256 and H′ : C → {0, 1}256

respectively, where C is the ciphertext space of FrodoPKE/FrodoKEM.
Let A be an adversary in the ANO-CCA game for FrodoKEM issuing

at most qG and qH′ quantum queries to the random oracles G and H′

respectively. Consider the sequence of games G0 − G12 described in Figures
5.2 and 5.3.

Game G0: The game G0 is exactly the ANO-CCA game for FrodoKEM.
Hence, ∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
FrodoKEM(A).

Game G1: In game G1, we modify the decapsulation oracles Decapsc∗(0, ·)
(resp., Decapsc∗(1, ·)) such that Hrej

0 (c) (resp., Hrej
1 (c)) is returned instead

of H′(s0, c) (resp., H′(s1, c)) for an invalid ciphertext c. Since this change
is similar to the sequence of game-hops “G0 → G0.5 → G1” in the proof
of Theorem 7, using Lemma 2 w.r.t. the pseudorandomness of H′(s0, ·)
and H′(s1, ·) with PRF keys s0, s1 ←$ {0, 1}256 respectively, it is not hard to
obtain

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ 4qH′√
2256

.

7 Alternatively, we could model H as a random oracle and then have CollH
FrodoPKE ≤ 1

2256 .
However, H is not modelled as a random oracle in the original (IND-CCA) security analysis
of FrodoKEM in its NIST PQC specification document [16]. Hence, we don’t do this either in
our following anonymity and robustness analysis.
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Games G0 − G8.5

1 : (pk0, sk′0), (pk1, sk′1)← KGen′

2 : G2 ←$ ΩG2 ; G0r, G1r ←$ ΩG

3 : Ggood
0r ← ΩG; G0r := Ggood

0r // G6.5 - G8.5

4 : Ggood
1r ← ΩG; G1r := Ggood

1r // G7 - G8.5

5 : G0k, G1k ←$ ΩG // G0 - G8

6 : G0k, G1k ←$ Ωpoly // G8.5

7 : H2 ←$ ΩH; Hrej
0 , Hrej

1 ←$ ΩH′

8 : H3 ←$ ΩG; Hacc
0 , Hacc

1 ←$ ΩH′

9 : b←$ {0, 1}
10 : m∗ ←$ {0, 1}256

11 : (k
∗
, r∗)← G(m∗, H(pkb)) // G0 −G2

12 : r∗ ← Gbr(m
∗) // G3 −G8.5

13 : k
∗ ← Gbk(m

∗) // G3 −G7

14 : c∗ ← Enc(pkb, m∗; r∗)

15 : k∗ ← H(k
∗
, c∗) // G0 −G7

16 : k∗ ← H3(m∗) // G8 −G8.5

17 : inp← (pk0, pk1, (c∗, k∗))

18 : b′ ← AG,H′ ,Decapsc∗ (inp)

19 : return [b′ = b]

Decapsa(0, c) // c ̸= a

1 : return Hacc
0 (c) // G4.5 - G8.5

2 : Parse sk′0 = (sk0, pk0, h0, s0)

3 : m′ = Dec(sk0, c)

4 : (k
′
, r′)← G(m′, h0) // G0 −G2

5 : (k
′
, r′)← (G0k × G0r)(m′) // G3 −G4

6 : if Enc(pk0, m′; r′) = c then

7 : return H′(k
′
, c)

8 : else return H′(s0, c) // G0

9 : else return Hrej
0 (c) // G1 - G4

G(m, h)

1 : if h = H(pk0) then // G2-G8.5

2 : (k, r)← (G0k × G0r)(m) // G2-G8.5

3 : elseif h = H(pk1) then // G2-G8.5

4 : (k, r)← (G1k × G1r)(m) // G2-G8.5

5 : else (k, r)← G2(m, h)

6 : return (k, r)

H′(k, c)

1 : m′ = Dec(sk0, c) // G4 −G8.5

2 : if Enc(pk0, m′; G0r(m′)) = c∧
G0k(m

′) = k // G4 −G8.5

3 : if c = c∗ // G6 −G8.5

4 : return H3(m′) // G6 −G8.5

5 : return Hacc
0 (c) // G4 −G8.5

6 : m′ = Dec(sk1, c) // G4 −G8.5

7 : if Enc(pk1, m′; G1r(m′)) = c∧
G1k(m

′) = k // G4 −G8.5

8 : if c = c∗ // G6 −G8.5

9 : return H3(m′) // G6 −G8.5

10 : return Hacc
1 (c) // G4 −G8.5

11 : return H2(k, c)

Decapsa(1, c) // c ̸= a

1 : return Hacc
1 (c) // G5 - G8.5

2 : Parse sk′1 = (sk1, pk1, h1, s1)

3 : m′ = Dec(sk1, c)

4 : (k
′
, r′)← G(m′, h1) // G0 −G2

5 : (k
′
, r′)← (G1k × G1r)(m′) // G3-G4.5

6 : if Enc(pk1, m′; r′) = c then

7 : return H′(k
′
, c)

8 : else return H′(s1, c) // G0

9 : else return Hrej
1 (c) // G1 - G4.5

Figure 5.2: Games G0 – G8.5 for the proof of Theorem 10. The sampling distri-
butions w.r.t. “Ggood

0r ← ΩG” and “Ggood
1r ← ΩG” are described in

descriptions of G6.5 and G7 below.
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Games G9 − G12

1 : (pk0, sk′0), (pk1, sk′1)← KGen′

2 : G2 ←$ ΩG2 ; G0r, G1r ←$ ΩG

3 : Ggood
0r ← ΩG; G0r := Ggood

0r // G9

4 : Ggood
1r ← ΩG; G1r := Ggood

1r // G9

5 : G0k, G1k ←$ Ωpoly

6 : H2 ←$ ΩH; H3 ←$ ΩG

7 : Hacc
0 , Hacc

1 ←$ ΩH′

8 : b←$ {0, 1}
9 : m∗ ←$ {0, 1}256

10 : r∗ ← Gbr(m
∗) // G9 −G10

11 : r∗ ←$ {0, 1}256 // G11 −G12

12 : c∗ ← Enc(pkb, m∗; r∗)

13 : k∗ ← H3(m∗) // G9 −G10

14 : k∗ ←$ {0, 1}256 // G11 −G12

15 : inp← (pk0, pk1, (c∗, k∗))

16 : i←$ {1, . . . , qG + qH′} // G12

17 : run AG,H′ ,Decapsc∗ (inp) until

i-th query to Gbr × H3 // G12

18 : measure the i-th query and let the

outcome be m′ // G12

19 : return [m′ = m∗] // G12

20 : b′ ← AG,H′ ,Decapsc∗ (inp)

21 : return [b′ = b]

Decapsa(i, c) // i ∈ {0, 1}, c ̸= a

1 : return Hacc
i (c)

G(m, h)

1 : if h = H(pk0) then

2 : r ← G0r(m)

3 : k← G0k(m)

4 : elseif h = H(pk1) then

5 : r ← G1r(m)

6 : k← G1k(m)

7 : else (k, r)← G2(m, h)

8 : return (k, r)

H′(k, c)

1 : Compute set of roots S0

of polynomial G0k(x)− k

2 : if ∃m′ ∈ S0 s.t.

Enc(pk0, m′; G0r(m′)) = c

3 : if c = c∗ then

4 : return H3(m′)

5 : return Hacc
0 (c)

6 : Compute set of roots S1

of polynomial G1k(x)− k

7 : if ∃m′ ∈ S1 s.t.

Enc(pk1, m′; G1r(m′)) = c

8 : if c = c∗ then

9 : return H3(m′)

10 : return Hacc
1 (c)

11 : return H2(k, c)

Figure 5.3: Games G9 – G12 for the proof of Theorem 10.
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Game G2: In game G2, we implicitly divide the G-queries into at-most
three categories: (1) query is of the form (m, h) with h = H(pk0), (2) query is
of the form (m, h) with h = H(pk1) and (3) the remaining queries. We then
respond to queries from the respective categories with (G0k(m), G0r(m)),
(G1k(m), G1r(m)) and G2(m, h) respectively, where Gik, Gir (for i ∈ {0, 1})
are internal random oracles8; note that we say “at most” three categories
because of the (unlikely) possibility that H(pk0) = H(pk1). It is not hard to
verify that the output distributions of the G-oracle in games G1 and G2 are
equivalent. Therefore,

Pr[G2 = 1] = Pr[G1 = 1].

Game G3: In game G3, we make the following changes w.r.t. the G-
oracle evaluation. First, we generate the values k

∗
, r∗ in setup of the game

as “k
∗ ← Gbk(m∗)” and “r∗ ← Gbr(m∗)” (effectively replacing the step

“(k
∗
, r∗) ← G(m∗, H(pkb))” in G2). We then similarly generate the values

k
′
, r′ w.r.t. the decapsulation oracles Decapsc∗(i, ·) (i ∈ {0, 1}) as “k

′ ←
Gik(m′)” and “r′ ← Gir(m′)” (replacing the step “(k

′
, r′)← G(m′, hi)” in G2,

where hi = H(pki) because we assume honest generation of the key-pair
(pk, sk′) at setup).

Let “bad” denote the event where the public keys pk0 and pk1 generated
honestly in the setup satisfy “H(pk0) = H(pk1)”. It is not hard to see that
the games G2 and G3 are equivalent unless the event bad happens. Hence,
from our definition of the probability CollH

FrodoPKE above, we have

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ Pr[bad] ≤ CollH
FrodoPKE.

Game G4: In game G4, we implicitly divide the H′-queries into three dis-
joint categories: (1) query is of the form (k, c) which satisfies Enc(pk0, m; G0r(m)) =
c and G0k(m) = k, where m = Dec(sk0, c), (2) query is of the form (k, c)
which does not fall under “category (1)”, while at the same time, satisfies
Enc(pk1, m; G1r(m)) = c and G1k(m) = k, where m = Dec(sk1, c), and (3)
the remaining queries. We then respond to queries from the respective cate-
gories with Hacc

0 (c), Hacc
1 (c) and H2(k, c), where Hacc

0 and Hacc
1 are internal

random oracles not directly accessible to the adversary A.
Focusing on H′-queries in “category (1)”, note that it is not possible

for two distinct queries (k
′
, c) and (k

′′
, c) to result in the same output

Hacc
0 (c). Note that Dec(sk0, ·) and G0k(·) are deterministic functions. Hence

8 In Figure 5.2, we define the random oracle (Gik × Gir) ∈ ΩG as (Gik × Gir)(m) =
(Gik(m), Gir(m)).
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w.r.t. the queries (k
′
, c) and (k

′′
, c), there can only exist a unique value m

such that m = Dec(sk0, c). At the same time, G0k(m) can take at most one
value. The same reasoning applies to “category (2)” as well, and hence, the
output distributions of the H′-oracle in the games G3 and G4 are equivalent.
Therefore,

Pr[G4 = 1] = Pr[G3 = 1].

Game G4.5: In game G4.5, we change the Decapsc∗(0, ·) oracle such that
there is no need for the secret key sk′0. Namely, Hacc

0 (c) is returned for the
decapsulation of ciphertext c w.r.t. sk′0. Let m′ = Dec(sk0, c), r′ = G0r(m′)
and k

′
= G0k(m′). Now consider the following two cases:

1. Enc(pk0, m′; r′) = c: In this case, the Decapsc∗(0, ·) oracle returns H′(k
′
, c)

in game G4 and Hacc
0 (c) in game G4.5. Hence, it is not hard to see that

we have H′(k
′
, c) = Hacc

0 (c) in G4, since the query (k
′
, c) falls un-

der “category (1)” w.r.t. oracle H′. Therefore, Decapsc∗(0, ·) oracles of
games G4 and G4.5 return the same value Hacc

0 (c).

2. Enc(pk0, m′; r′) ̸= c: In this case, the Decapsc∗(0, ·) oracle returns

Hrej
0 (c) in game G4 and Hacc

0 (c) in game G4.5. In game G4, as the

random function Hrej
0 is independent of all other oracles, the out-

put Hrej
0 (c) is uniformly random in the adversary A’s view. In game

G4.5, the only way A gets prior access to the value Hacc
0 (c) is if it

made a H′-query (k
′′

, c) such that Enc(pk0, m′′; G0r(m′′)) = c (and
G0k(m′′) = k

′′
), where m′′ = Dec(sk0, c). But since Dec(sk0, ·) is a de-

terministic function, we have m′′ = m′ leading to a contradiction of
“Enc(pk0, m′; r′) ̸= c”. Therefore, such a prior access is not possible
and Hacc

0 (c) will also be a uniformly random value in A’s view.

As the output distributions of Decapsc∗(0, ·) oracle in G4 and G4.5 are the
same in both cases, we have

Pr[G4.5 = 1] = Pr[G4 = 1].

Game G5: In game G5, we change the Decapsc∗(1, ·) oracle such that
Hacc

1 (c) is returned for the decapsulation of any ciphertext c w.r.t. sk′1. The
analysis here follows quite similarly to that of the previous game-hop
except that this simulation of the Decapsc∗(1, ·) oracle – without the secret
key sk′1 – will fail (w.r.t. case 1 in the above game-hop) if A asks for
the decapsulation of a ciphertext ĉ such that Enc(pk1, m′; G1r(m′)) = ĉ =
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Enc(pk0, m′′; G0r(m′′)) and G1k(m′) = k
′
= G0k(m′′), where m′ = Dec(sk1, ĉ)

and m′′ = Dec(sk0, ĉ). In this peculiar case, Hacc
0 (ĉ) is returned in G4.5 and

Hacc
1 (ĉ) is returned in G5.
We bound the probability of this peculiar event (i.e., A asking for the

decapsulation of such an above ciphertext ĉ w.r.t. sk′1) by the advantage of
an adversary B̂ against the claw-finding game w.r.t. the pair of quantum
random oracles (G0k, G1k). Because note that the pair (m′′, m) is a claw with
G0k(m′′) = G1k(m′), where m′′ = Dec(sk0, ĉ) and m′ = Dec(sk1, ĉ). More
formally, B̂ proceeds as follows:

• Runs A as a subroutine as in game G4.5, by creating the appropriate
setup (starting with the generation of two honest key-pairs (pk0, sk′0)
and (pk1, sk′1)).

• Uses three different 2qG-wise independent functions to perfectly sim-
ulate the random oracles G2, G0r and G1r respectively, four differ-
ent 2qH′ -wise independent functions to simulate the random ora-
cles Hacc

0 , Hacc
1 , Hrej

1 and H2 respectively in A’s view, as noted in
Lemma 1. Also uses the pair of oracles f0 : {0, 1}256 → {0, 1}256 and
f1 : {0, 1}256 → {0, 1}256 – which is the instance of the claw-finding
game – to simulate the oracles G0k and G1k respectively.

• Answers decapsulation queries the same way as in G4.5. Particularly,
w.r.t. any query ĉ made by A to the Decaps(1, ·) oracle, checks if
the query satisfies the above described peculiar event. If so, returns
the pair (m′′, m′) as a claw w.r.t. ( f0, f1), where m′′ = Dec(sk0, ĉ) and
m′ = Dec(sk1, ĉ).

Note that B̂ makes at most qG queries to the pair ( f0, f1). Let Pr[pec] be the
probability of this peculiar event, denoted as “pec”, occurring. We have the
games G4.5 and G5 to be equivalent unless the event pec occurs. From the
construction of our claw-finding adversary B̂ above, it is not hard to see

that Pr[pec] ≤ C(qG+1)3

2256 from Lemma 11. Hence, we have

|Pr[G5 = 1]− Pr[G4.5 = 1]| ≤ Pr[pec] ≤ C(qG + 1)3

2256 .

Game G6: In game G6, we make a further modification to the evalua-
tion of “category (1) and (2)” H′-queries (as introduced in the “G3 → G4”
game-hop) of the form (k, c∗) as follows, where c∗ is the challenge cipher-
text computed in the setup: respond to the corresponding “category (1)”
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queries with H3(m), where m = Dec(sk0, c), and the corresponding “cate-
gory (2)” queries with H3(m), where m = Dec(sk1, c). Here H3 is an internal
independent random oracle.

Let m0 = Dec(sk0, c∗) and m1 = Dec(sk1, c∗) which additionally satisfy
Enc(pk0, m0; G0r(m0)) = c∗ and Enc(pk1, m1; G1r(m1)) = c∗. So to analyze
this change to oracle H′, there are only two H′-queries worth considering:
namely, “category (1)” query (k0, c∗) and “category (2)” query (k1, c∗) where
k0 = G0k(m0) and k1 = G1k(m1). With respect to these two queries, the
H′ oracle would return Hacc

0 (c∗), Hacc
1 (c∗) respectively in G5, and H3(m0),

H3(m1) respectively in G6. Conditional on m0 ̸= m1, the adversary A’s
view would be identical even after this change because the random values
Hacc

0 (c∗), Hacc
1 (c∗) are only accessible to A via the H′-oracle in G5, and

in particular, not through the Decapsc∗(i, ·) oracles since c∗ is a forbid-
den decapsulation query. Hence in G6, we are effectively replacing two
uniformly random values that can only be accessed via the H′-oracle by
A with two other uniformly random values. Hence, the output distribu-
tions of the H′-oracle in games G5 and G6 are equivalent unless we have
m0 = m1, or in other words, the following event occurs w.r.t. two honest
FrodoPKE key-pairs (pk0, sk0), (pk1, sk1): Dec(sk0, c∗) = Dec(sk1, c∗) = m′

and Enc(pk0, m′; G0r(m′)) = Enc(pk1, m′; G1r(m′)) = c∗, where for m∗ ←$

{0, 1}256 and b←$ {0, 1}, we have c∗ = Enc(pkb, m∗; Gbr(m∗)) (note that we
are not assuming the correctness of FrodoPKE, i.e., m∗ may or may not be
equal to m′).

We can bound the probability of the above event by considering the
sub-event “Enc(pk1−b, m′; G(1−b)r(m′)) = c∗”. Note that in the context of an
experiment describing the above event at the setup, we have G(1−b)r(m′)
resulting in uniformly random coins r′ ←$ {0, 1}256, since Gbr is used to
compute the ciphertext c∗ and G(1−b)r is a random oracle independent
to Gbr. Since FrodoPKE is γ-spread, for the key-pair (pk1−b, sk1−b) and
message m′, we have the condition “Enc(pk1−b, m′; r′) = c∗” to hold with
probability ≤ 2−γ for uniformly random r′. Hence, we have

|Pr[G6 = 1]− Pr[G5 = 1]| ≤ 2−γ.

Game G6.5: In game G6.5, we change the random oracle G0r such that it
uniformly samples “good” random coins w.r.t. the key-pair (pk0, sk0), as

seen in the proof of Theorem 7. Specifically, define the oracle Ggood
0r ← ΩG

such that Ggood
0r (m) such that Ggood

0r (m) is sampled according to a uniform
distribution in Rgood((pk0, sk0), m). Hence in G6.5, we replace the oracle G0r



5.2 frodokem 113

with Ggood
0r . By using a similar analysis as the game-hop “G1 → G2” in the

proof of Theorem 7 (in fact, the analysis would be simpler in this case since
we have to consider a single key-pair (pk0, sk0) instead of two), it is not
hard to obtain

|Pr[G6.5 = 1]− Pr[G6 = 1]| ≤ 2qG
√

δ.

Game G7: In game G7, we now change the random oracle G1r such that it
uniformly samples “good” random coins w.r.t. the key-pair (pk1, sk1). The
analysis in this case would be similar (and simpler when compared) to the
game-hop “G1 → G2” in the proof of Theorem 7. But a thing worth noting
is that the distinguisher BĜ (for Ĝ ∈ {G1r, Ggood

1r }) – as was used in the
“G1 → G2” game-hop in the proof of Theorem 7 – will have a single key-pair
(pk1, sk1) as input, and will need to simulate A’s view in the games G6.5

and G7. But since the distinguisher BĜ can be unbounded, it can simulate the
“non-ideal” random oracle Ggood

0r that is used in G6.5 and G7. Again, it is not
hard to obtain

|Pr[G7 = 1]− Pr[G6.5 = 1]| ≤ 2qG
√

δ.

Game G8: In the setup of game G8, we generate the value k∗ as “k∗ ←
H3(m∗)” (as opposed to “k∗ ← H(k

∗
, c∗)” in G7). Also k

∗
is not generated

in the setup (i.e., we are removing the step “k
∗ ← Gbk(m∗)” in G7) as the

value is not required anymore in the game. Note that G8 is equivalent to
G7 w.r.t. this change unless the following event occurs: for b = 1 if we
have c∗ = Enc(pk1, m∗; G1r(m∗)) and k

∗ ← G1k(m∗) (for m∗ ←$ {0, 1}256)
in the setup, then Enc(pk0, m′; G0r(m′)) = c∗ and G0k(m′) = k

∗
, where

Dec(sk0, c∗) = m′. Note that in this case, the value k∗ computed in setup of
the games will be equal to H3(m′)(= H(k

∗
, c∗)) in G7 and H3(m∗) in G8.

We can bound the probability of such an event by considering the sub-
event “G0k(m′) = G1k(m∗) (= k

∗
)”. More formally, consider a (hypothetical)

experiment which describes the above event at the setup as follows. First, it
generates (honestly) two FrodoPKE key-pairs (pk0, sk0) and (pk1, sk1). Then
it uniformly at random samples a message m∗ ←$ {0, 1}256 and computes
c∗ = Enc(pk1, m∗; G1r(m∗)), k

∗ ← G1k(m∗); one thing worth noting here
is that the hypothetical experiment can simulate the “non-ideal” random
oracle G1r, which only samples “good” random coins, with an unbounded
running time. Then it computes m′ = Dec(sk0, c∗) and finally checks if
“G0k(m′) = k

∗
”. Note that in the context of this experiment, since this is the
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first invocation of the oracle G0k (independent to G1k), G0k(m′) results in a
uniformly random value k

′ ←$ {0, 1}256. Therefore, the probability of this
sub-event, or “G0k(m′) = k

∗
”, happening is at most 1/2256. Hence, it is not

hard to see that
|Pr[G8 = 1]− Pr[G7 = 1]| ≤ 1

2256 .

Game G8.5: In game G8.5, we replace the random oracles Gik (i ∈ {0, 1})
with 2qG-wise independent functions, following Lemma 1. Random poly-
nomials of degree 2qG − 1 over the finite field representation of the mes-
sage space {0, 1}256 are 2qG-wise independent. Let Ωpoly be the set of all
such polynomials. We are then replacing the step “G0k, G1k ←$ ΩG” with
“G0k, G1k ←$ Ωpoly” in G8.5. From Lemma 1, as this change is indistinguish-
able when the oracles G0k, G1k are queried at most qG times, we have

Pr[G8.5 = 1] = Pr[G8 = 1].

Game G9: In game G9, we change the H′-oracle such that there is no need
for secret keys sk0, sk1. Namely, we implicitly divide the H′-queries into
three disjoint categories: (1) query is of the form (k, c) such that there exists
m ∈ {0, 1}256 which is a root of the polynomial G0k(x)− k (recall that G0k
and G1k are now polynomials) and Enc(pk0, m; G0r(m)) = c, (2) query is
of the form (k, c) such that it does not fall under “category (1)”, while at
the same time, there exists m ∈ {0, 1}256 which is a root of the polynomial
G1k(x)− k and Enc(pk1, m; G1r(m)) = c, and (3) the remaining queries. We
then respond to queries from the respective categories as follows: (1) return
H3(m) if c = c∗, otherwise return Hacc

0 (c), (2) return H3(m) if c = c∗,
otherwise return Hacc

1 (c), and (3) return H2(k, c).
It is not hard to see that the input-output behavior of oracle H′ in games

G8.5 and G9 is identical. For example, w.r.t. a query (k, c) if the oracle H′

in G8.5 returns Hacc
0 (c), then we have Enc(pk0, m; G0r(m)) = c ( ̸= c∗) and

G0k(m) = k, where m = Dec(sk0, c). This implies that m is the only root
of the polynomial G0k(x)− k which satisfies Enc(pk0, m; G0r(m)) = c (note
that there cannot exist some other root m′ ( ̸= m) of G0k(x)− k satisfying
Enc(pk0, m′; G0r(m′)) = c because, as G0r samples “good” random coins,
we must then have Dec(sk0, c) = m′ = m, a contradiction), and hence on the
same input (k, c), oracle H′ in G9 outputs the value Hacc

0 (c) as well. In the
other direction, w.r.t. a query (k, c) if the oracle H′ in G9 returns Hacc

0 (c),
then there exists a root m of the polynomial G0k(x)− k such that it uniquely
satisfies Enc(pk0, m; G0r(m)) = c ( ̸= c∗). Since G0r samples “good” random
coins, we must have Dec(sk0, c) = m with m satisfying G0k(m) = k and
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Enc(pk0, m; G0r(m)) = c. Therefore, on the same input (k, c), oracle H′ in
G8.5 outputs the value Hacc

0 (c) as well. A similar reasoning applies to the
outputs Hacc

1 (c) and H2(k, c) w.r.t. H′-queries (k, c), and also to queries of
the form (k, c∗), which finally leads to the equivalence of oracles H′ in G8.5
and G9. We thus have

Pr[G9 = 1] = Pr[G8.5 = 1].

Game G10: In game G10, we reset the random oracles Gir (for i ∈ {0, 1}) so
that they return uniformly random coins from {0, 1}256 instead of returning
only “good” random coins. Since this change, in a sense, is the “inverse” of
the game-hop G6 → G7, by using a similar analysis we obtain

|Pr[G10 = 1]− Pr[G9 = 1]| ≤ 4qG
√

δ.

Game G11: In the setup of game G11, we generate the values r∗ and
k∗ such that they are uniformly random values independent of any ora-
cles, i.e., we replace the step “r∗ ← Gbr(m∗)” with “r∗ ←$ {0, 1}256” and
“k∗ ← H3(m∗)” with “k∗ ←$ {0, 1}256”. We use Lemma 3 to bound the
difference in the success probabilities of A in G10 and G11. Let A be an
oracle algorithm that has quantum access to the random oracle Gr × H3,
where (Gr ×H3)(m) = (Gr(m), H3(m)). Figure 5.4 describes AGr×H3 ’s oper-
ation on input (m∗, (r∗, k∗)). Note that the algorithm AGr×H3 makes at most
qG + qH′ number of queries to the random oracle Gr × H3 to respond to
A’s G-oracle and H-oracle queries.9 With this construction of A, note that
P1

A = Pr[G10 = 1] and P2
A = Pr[G11 = 1], where P1

A and P2
A are as defined

in Lemma 3 w.r.t. the algorithm AGr×H3 . To analyze the corresponding
probability PB in Lemma 3, we define game G12 (see Fig. 5.3) such that
PB = Pr[G12 = 1]. From Lemma 3, we thus have

|Pr[G10 = 1]− Pr[G11 = 1]| ≤ 2(qG + qH′)
√

Pr[G12 = 1].

We now bound the success probability of A in G11 by the advantage of an
adversary B in the ANO-CPA game of FrodoPKE. Upon receiving public-
keys pk0 and pk1, B submits a uniformly random message m∗ ←$ {0, 1}256

to the ANO-CPA challenger. It then receives a ciphertext c∗, where c∗ ←
Enc(pkb, m∗; r∗) for uniformly random bit b(←$ {0, 1}) and randomness
r∗(←$ {0, 1}256) chosen by the challenger. B then proceeds as follows:

9 See Footnote 3 of Chapter 3 for details on how AGr×H3 can respond to the adversary A’s hash
queries.
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AGr×H3(m∗, (r∗, k∗))

1 : (pk0, sk′0), (pk1, sk′1)← KGen′

2 : G2 ←$ ΩG2 ; G0k, G1k ←$ Ωpoly

3 : H2 ←$ ΩH; Hacc
0 , Hacc

1 ←$ ΩH′

4 : b←$ {0, 1}
5 : Gbr := Gr; G(1−b)r ←$ ΩG

6 : c∗ ← Enc(pkb, m∗; r∗)

7 : inp← (pk0, pk1, (c∗, k∗))

8 : b′ ← AG,H′ ,Decapsc∗ (inp)

9 : return [b′ = b]

G(m, h)

1 : if h = H(pk0) then

2 : r ← G0r(m)

3 : k← G0k(m)

4 : elseif h = H(pk1) then

5 : r ← G1r(m)

6 : k← G1k(m)

7 : else (k, r)← G2(m, h)

8 : return (k, r)

H(k, c)

1 : Compute set of roots S0

of polynomial G0k(x)− k

2 : if ∃m′ ∈ S0 s.t.

Enc(pk0, m′; G0r(m′)) = c

3 : if c = c∗ then

4 : return H3(m′)

5 : return Hacc
0 (c)

6 : Compute set of roots S1

of polynomial G1k(x)− k

7 : if ∃m′ ∈ S1 s.t.

Enc(pk1, m′; G1r(m′)) = c

8 : if c = c∗ then

9 : return H3(m′)

10 : return Hacc
1 (c)

11 : return H2(k, c)

Decapsa(i, c) // i ∈ {0, 1}, c ̸= a

1 : return Hacc
i (c)

Figure 5.4: Algorithm AGr×H3 for the proof of Theorem 10.
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• Runs A as a subroutine as in game G11.

• Uses five different 2qG-wise independent functions to perfectly sim-
ulate the random oracles G2, G0r, G1r, G0k and G1k respectively, four
different 2qH′ -wise independent functions to simulate the random
oracles Hacc

0 , Hacc
1 , H2 and H3 respectively in A’s view, as noted in

Lemma 1. The random oracles G and H are simulated in the same
way as in G11.

• Answers decapsulation queries using the oracles Hacc
i (i ∈ {0, 1}) as

in G11.

• For A’s challenge query, samples a uniformly random key k∗ ←$

{0, 1}256 and responds with (pk0, pk1, (c∗, k∗)).

• After obtaining a bit b′ fromA, forwards b′ to its ANO-CPA challenger
as the final message.

It is easy to see that |Pr[G11 = 1]− 1
2 | = AdvANO-CPA

FrodoPKE(B). Now we bound
the success probability of A in G12 by the advantage of an adversary B′′
in the OW-CPA game of FrodoPKE. Upon receiving a public-key pk along
with a ciphertext c∗, where c∗ ← Enc(pk, m∗; r∗) for uniformly random
(secret) message m∗(←$ {0, 1}256) and randomness r∗(←$ {0, 1}256) chosen
by the challenger, B′′ proceeds as follows:

• Runs A as a subroutine as in game G12 (e.g., starting with sampling a
uniformly random bit b←$ {0, 1}).

• Uses four different 2qG-wise independent functions to perfectly sim-
ulate the random oracles G2, G(1−b)r, G0k and G1k respectively, three
different 2qH′ -wise independent functions to simulate the random
oracles Hacc

0 , Hacc
1 and H2 respectively, and two different 2(qG + qH′)-

wise independent functions to simulate the random oracles Gbr and
H3 respectively in A’s view, as noted in Lemma 1. Also evaluates A’s
G- and H-queries using the oracle Gbr × H3; the random oracles G
and H are simulated in the same way as in G12.

• Answers decapsulation queries using the oracles Hacc
i (i ∈ {0, 1}) as

in G12.

• For A’s challenge query, first sets pkb = pk. Then generates a key-
pair (pk1−b, sk1−b)← KGen, samples a uniformly random key k∗ ←$

{0, 1}256 and responds with (pk0, pk1, (c∗, k∗)). (By doing this, note
that we have c∗ ← Enc(pkb, m∗; r∗) in A’s view.)
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• Selects i←$ {1, . . . , qG + qH′}, measures the i-th query to oracle Gbr ×
H3 and returns the outcome m′.

Again, it is not hard to see that Pr[G12 = 1] ≤ AdvOW-CPA
FrodoPKE(B′′). From

Lemma 7, since we know that IND-CPA security of a PKE scheme with a
sufficiently large message space also implies its OW-CPA security, corre-
sponding to adversary B′′, there exists an IND-CPA adversary B′ against
FrodoPKE such that

AdvOW-CPA
FrodoPKE(B′′) ≤ AdvIND-CPA

FrodoPKE(B′) +
1

2256 ,

where the running time of B′ is that of B′′, and {0, 1}256 is the message
space of FrodoPKE.

Hence by collecting all of the above bounds, we finally arrive at

AdvANO-CCA
FrodoKEM(A) ≤ AdvANO-CPA

FrodoPKE(B) + 2(qG + qH′)

√
AdvIND-CPA

FrodoPKE(B′) +
1

2256

+ CollH
FrodoPKE +

C(qG + 1)3 + 1
2256 +

4qH′

2128 + 2−γ + 8qG
√

δ.

Regarding the above δ-correctness and γ-spreadness of FrodoPKE as-
sumed in Theorem 10 above, the former property was concretely analyzed
in [16, Subsection 2.2.7]. The latter property was also recently analyzed
in [8] wherein the authors provided concrete values of γ for different levels
of security specified by NIST in the PQC standardization process.10

Theorem 11. For any SCFR-CCA adversaryA against the scheme FrodoKEM =
(KGen′,Encap,Decap) issuing at most qG and qH′ queries to the quantum random
oracles G and H′, we have

AdvSCFR-CCA
FrodoKEM(A) ≤ CollH

FrodoPKE +
C(qG + 1)3

2256 +
C(qH′ + 1)3

2256 +
4qH′

2128 ,

where C (< 648) is the constant from Lemma 11.

Proof. Denote ΩG2 , ΩG, ΩH and ΩH′ to be the set of all functions G2 :
{0, 1}512 → {0, 1}512, G : {0, 1}256 → {0, 1}256, H : {0, 1}256∪C → {0, 1}256

and H′ : C → {0, 1}256 respectively, where C is the ciphertext space of

10 As mentioned in Subsection 3.1.1, we are currently considering “Level 5” security level
parameters for FrodoKEM. Nevertheless, our anonymity and robustness analysis of FrodoKEM
can be extended to other parameter sets in a straightforward manner.
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Games G0 − G5

1 : (pk0, sk′0), (pk1, sk′1)← KGen′

2 : G2 ←$ ΩG2 ; G0r, G1r ←$ ΩG

3 : G0k, G1k ←$ ΩG

4 : H2 ←$ ΩH; Hrej
0 , Hrej

1 ←$ ΩH′

5 : Hacc
0 , Hacc

1 ←$ ΩH′

6 : inp← (pk0, pk1)

7 : c← AG,H′ ,Decaps⊥ (inp)

8 : k0 := Decaps⊥(0, c)

9 : k1 := Decaps⊥(1, c)

10 : return [k0 = k1 ̸= ⊥]

Decapsa(0, c) // c ̸= a

1 : return Hacc
0 (c) // G4.5 - G5

2 : Parse sk′0 = (sk0, pk0, h0, s0)

3 : m′ := Dec(sk0, c)

4 : (k
′
, r′)← G(m′, h0) // G0 −G2

5 : r′ ← G0r(m′) // G3 −G4

6 : k
′ ← G0k(m

′) // G3 −G4

7 : if Enc(pk0, m′; r′) = c then

8 : return H′(k
′
, c)

9 : else return H′(s0, c) // G0

10 : else return Hrej
0 (c) // G1 - G4

G(m, h)

1 : if h = H(pk0) then // G2-G5

2 : r ← G0r(m) // G2 - G5

3 : k← G0k(m) // G2 - G5

4 : elseif h = H(pk1) then // G2-G5

5 : r ← G1r(m) // G2 - G5

6 : k← G1k(m) // G2 - G5

7 : else (k, r)← G2(m, h)

8 : return (k, r)

H′(k, c)

1 : m′ := Dec(sk0, c) // G4 −G5

2 : if Enc(pk0, m′; G0r(m′)) = c∧
G0k(m

′) = k // G4 −G5

3 : return Hacc
0 (c) // G4 −G5

4 : m′ := Dec(sk1, c) // G4 −G5

5 : if Enc(pk1, m′; G1r(m′)) = c∧
G1k(m

′) = k // G4 −G5

6 : return Hacc
1 (c) // G4 −G5

7 : return H2(k, c)

Decapsa(1, c) // c ̸= a

1 : return Hacc
1 (c) // G5

2 : Parse sk′1 = (sk1, pk1, h1, s1)

3 : m′ := Dec(sk1, c)

4 : (k
′
, r′)← G(m′, h1) // G0 −G2

5 : r′ ← G1r(m′) // G3 −G4.5

6 : k
′ ← G1k(m

′) // G3 −G4.5

7 : if Enc(pk1, m′; r′) = c then

8 : return H′(k
′
, c)

9 : else return H′(s1, c) // G0

10 : else return Hrej
1 (c) // G1 - G4.5

Figure 5.5: Games G0 – G5 for the proof of Theorem 11.



120 anon. & rob . enhancements , part ii : application to nist pqc candidates

FrodoPKE/FrodoKEM. Let A be an adversary in the SCFR-CCA game for
FrodoKEM issuing at most qG and qH′ quantum queries to the random
oracles G and H′ respectively.

The structure of the proof is similar to that of Theorem 10. Basically we
do a similar sequence of game-hops as in the proof of Theorem 10 until
the point where we can simulate the decapsulation oracles Decaps⊥(i, ·)
(i ∈ {0, 1}) without requiring the corresponding secret keys sk′i.

To be specific, we do the sequence of game-hops G0 → G5 as described
in Figure 5.5. By a similar analysis as that in the proof of Theorem 10

w.r.t. these game-hops, it is not hard to obtain

|Pr[G0 = 1]− Pr[G5 = 1]| ≤ CollH
FrodoPKE +

C(qG + 1)3

2256 +
4qH′

2128 .

Note that the game G0 is exactly the SCFR-CCA game for FrodoKEM.
Hence, we have

Pr[G0 = 1] = AdvSCFR-CCA
FrodoKEM(A).

Coming to game G5, note that the adversary A wins the game if it
outputs a ciphertext c such that Decaps⊥(0, c) = Decaps⊥(1, c). Because of
the modification of Decaps⊥(i, ·) oracles, this winning condition translates
to Hacc

0 (c) = Hacc
1 (c), where Hacc

0 and Hacc
1 are independent quantum

random oracles. Note that in this case, (c, c) is a claw w.r.t. the pair of QROs
Hacc

0 : C → {0, 1}256 and Hacc
1 : C → {0, 1}256. Hence we can bound the

success probability of A in G5 by the advantage of an adversary B against
the claw-finding game w.r.t. the instance (Hacc

0 , Hacc
1 ). B proceeds as follows:

• Runs A as a subroutine as in game G5, by creating the appropriate
setup (starting with the generation of two honest key-pairs (pk0, sk′0)
and (pk1, sk′1)).

• Uses five different 2qG-wise independent functions to perfectly simu-
late random oracles G2, G0r, G1r, G0k and G1k respectively, and a 2qH′ -
wise independent function to simulate random oracle H2 in A’s view,
as noted in Lemma 1. Also uses the pair of oracles f0 : C → {0, 1}256

and f1 : C → {0, 1}256 – which is the instance of the claw-finding
game – to simulate oracles Hacc

0 and Hacc
1 respectively.

• The random oracles G and H′ are simulated in the same way as in G5
(e.g., note that H′ can be simulated as the claw-finding adversary D
possesses the secret keys sk0 and sk1).
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• Answers decapsulation queries using the oracles fi(·) (i ∈ {0, 1}) as
in G5.

• After obtaining a ciphertext c from A, forwards (c, c) as the claw
w.r.t. ( f0, f1).

Note that B makes at most qH′ queries to the pair ( f0, f1). It is easy to

see that Pr[G5 = 1] ≤ C(qH′+1)3

2256 from Lemma 11. Hence, we finally get

AdvSCFR-CCA
FrodoKEM(A) ≤ CollH

FrodoPKE +
C(qG + 1)3

2256 +
C(qH′ + 1)3

2256 +
4qH′

2128 .

5.2.3 Anonymity and Robustness of Hybrid PKE Derived from FrodoKEM

Regarding hybrid PKE schemes obtained from FrodoKEM via the KEM-
DEM composition, we additionally show that such PKE schemes satisfy the
stronger ANO-CCA notion of anonymity, in a similar vein to Theorem 9

w.r.t. FO ̸⊥-based KEMs.

Theorem 12. Let FrodoKEMhy = (KGenhy,Enchy,Dechy) be a hybrid PKE
scheme obtained by composing FrodoKEM = (KGen′,Encap,Decap) with a one-
time secure AE scheme DEM = (KGendem,Encdem,Decdem). Given the base
scheme FrodoPKE = (KGen,Enc,Dec) underlying FrodoKEM is δ-correct and
γ-spread, then for any ANO-CCA adversary Ahy against FrodoKEMhy issuing
at most qG and qH′ queries to the quantum random oracles G and H′ respectively,
there exist ANO-CCA adversary Akem and IND-CCA adversary Akem against
FrodoKEM and INT-CTXT adversary Adem against DEM such that

AdvANO-CCA
FrodoKEMhy(Ahy) ≤ AdvANO-CCA

FrodoKEM(Akem) + 2AdvIND-CCA
FrodoKEM(Akem) + 2−γ

+ 2AdvINT-CTXT
DEM (Adem) + 2CollH

FrodoPKE +
4qH′

2128 + 8qG
√

δ,

where CollH
FrodoPKE is probability of the event “H(pk0) = H(pk1)” with pk0 and

pk1 being two honestly-generated public keys of FrodoPKE. Also the running
times of Akem, Akem and Adem are the same as that of Ahy.

Proof. The proof is similar to that of Theorem 9, except for some initial
game-hops. Here we will focus on these hops.
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Games G0 - G3

1 : (pk0, sk0), (pk1, sk1)← KGen

2 : s0 ←$ {0, 1}256; s1 ←$ {0, 1}256

3 : sk′0 = (sk0, pk0, H(pk0), s0)

4 : sk′1 = (sk1, pk1, H(pk1), s1)

5 : G2 ←$ ΩG2 ; H′ ←$ ΩH

6 : G0r, G1r ←$ ΩG // G1 −G3

7 : G0k, G1k ←$ ΩG // G1 −G3

8 : b←$ {0, 1}
9 : m∗ ←$ {0, 1}256

10 : (k
∗
, r∗)←$ G(m∗, H(pkb)) // G0 −G1

11 : r∗ ← Gbr(m
∗) // G2 −G3

12 : k
∗ ← Gbk(m

∗) // G2 −G3

13 : c∗0 ← Enc(pkb, m∗; r∗)

14 : k∗ ← H′(k
∗
, c∗0)

15 : krej ← H′(s1−b, c∗0) // G3

16 : (mhy, st)← AG,H′ ,Dec
hy
⊥

hy (pk0, pk1)

17 : c∗1 ← Encdem(k∗, mhy)

18 : c∗ = (c∗0 , c∗1)

19 : b′ ← AG,H′ ,Dec
hy
c∗

hy (c∗, st)

20 : return [b′ = b]

G(m, h)

1 : if h = H(pk0) then // G1 −G3

2 : r ← G0r(m) // G1 −G3

3 : k← G0k(m) // G1 −G3

4 : elseif h = H(pk1) then // G1 −G3

5 : r ← G1r(m) // G1 −G3

6 : k← G1k(m) // G1 −G3

7 : else (k, r)← G2(m, h)

8 : return (k, r)

Dec
hy
a (b, c) // c ̸= a

1 : Parse c = (c0, c1)

2 : Parse sk′b = (skb, pkb, hb, sb)

3 : m′ := Dec(skb, c0)

4 : (k
′
, r′)← G(m′, hb) // G0 −G1

5 : r′ ← Gbr(m
′) // G2 −G3

6 : k
′ ← Gbk(m

′) // G2 −G3

7 : if Enc(pkb, m′; r′) = c0

8 : k′ ← H′(k
′
, c0)

9 : else k′ ← H′(sb, c0)

10 : mhy′ := Decdem(k′, c1)

11 : return mhy′

Dec
hy
a (1− b, c) // c ̸= a

1 : Parse c = (c0, c1) and

sk′1−b = (sk1−b, pk1−b, h1−b, s1−b)

2 : if c0 = c∗0 then // G3

3 : k′ := krej // G3

4 : else // G3

5 : m′ := Dec(sk1−b, c0)

6 : (k
′
, r′)← G(m′, h1−b)

7 : r′ ← G(1−b)r(m
′) // G2 −G3

8 : k
′ ← G(1−b)k(m

′) // G2 −G3

9 : if Enc(pk1−b, m′; r′) = c0

10 : k′ ← H′(k
′
, c0)

11 : else k′ ← H′(s1−b, c0)

12 : mhy′ := Decdem(k′, c1)

13 : return mhy′

Figure 5.6: Games G0 – G3 for the proof of Theorem 12.
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Denote ΩG2 , ΩG and ΩH to be the set of all functions G2 : {0, 1}512 →
{0, 1}512, G : {0, 1}256 → {0, 1}256 and H : {0, 1}256 ∪ C → {0, 1}256 respec-
tively. Let Ahy be an adversary in the ANO-CCA game for FrodoKEMhy

issuing at most qG and qH′ quantum queries to the random oracles G
and H respectively. Consider the sequence of games G0 − G3 described in
Figure 5.6.

Game G0: The game G0 is equivalent to the ANO-CCA game for FrodoKEMhy,
except for some “cosmetic” changes. Namely, the pair (c∗0 , k∗) resulting from
running Encap(pkb) for a uniformly random bit b is generated before the
adversary Ahy gets to choose a message mhy. This change does not affect
Ahy’s view in any way. Hence,∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvANO-CCA
FrodoKEMhy(Ahy).

Game G1: In game G1, we implicitly divide the G-queries into at most
three categories: (1) query is of the form (m, h) with h = H(pk0), (2) query is
of the form (m, h) with h = H(pk1), and (3) the remaining queries. We then
respond to the queries from the respective categories with (G0k(m), G0r(m)),
(G1k(m), G1r(m)) and G2(m, h) respectively, where Gik, Gir (for i ∈ {0, 1})
are internal random oracles; note that we say “at most” three categories
because of the (unlikely) possibility that H(pk0) = H(pk1). It is not hard
to verify that output distributions of the G-oracle in games G0 and G1 are
equivalent. Therefore,

Pr[G1 = 1] = Pr[G0 = 1].

Game G2: In game G2, we make the following changes w.r.t. the G-
oracle evaluation. First, we generate the values k

∗
, r∗ in setup of the game

as “k
∗ ← Gbk(m∗)” and “r∗ ← Gbr(m∗)” (effectively replacing the step

“(k
∗
, r∗) ← G(m∗, H(pkb))” in G1). We then similarly generate the values

k
′
, r′ w.r.t. the decryption oracles Dec

hy
a (i, ·) (i ∈ {0, 1}) as “k

′ ← Gik(m′)”
and “r′ ← Gir(m′)” (replacing the step “(k

′
, r′)← G(m′, hi)” in G1, where

h = H(pki)).
Let “bad” denote the event where the public keys pk0 and pk1 generated

honestly in the setup satisfy “H(pk0) = H(pk1)”. It is not hard to see that
the games G1 and G2 are equivalent unless the event bad happens. As seen
in the proof of Theorem 10 (specifically, the “G2 → G3” hop), we also have
the probability of the event bad occurring to be Pr[bad] ≤ CollH

FrodoPKE.
Hence, we get
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|Pr[G2 = 1]− Pr[G1 = 1]| ≤ Pr[bad] ≤ CollH
FrodoPKE.

Game G3: In game G3, we modify the oracle Dec
hy
a (1− b, ·) such that if the

decryption query is (c0, c1) where c0 = c∗0 , then the oracle uses key krej(=
H′(s1−b, c∗0)) to decrypt c1. Here krej is the key returned if Decap(sk′1−b, c∗0)
would have resulted in an “implicit rejection”. Thus, it is not hard to see
that the games G2 and G3 are equivalent unless c∗0 is not (implicitly) rejected
by the Decap(sk′1−b, ·) operation, or in other words, if the following event
occurs: “Enc(pk1−b, m′; r′) = c∗0” where for a uniformly random message
m∗ ←$ {0, 1}256 we have (k

∗
, r∗)←$ (Gbk(m∗), Gbr(m∗)), Enc(pkb, m∗; r∗) =

c∗0 , Dec(sk1−b, c∗0) = m′ and (k
′
, r′)←$ (G(1−b)k(m′), G(1−b)r(m′)).

The analysis that follows is quite similar to the “G5 → G6” game-hop
in the proof of Theorem 10. Note that in the context of an experiment
describing the above event at the setup, we have G(1−b)r(m′) resulting in
uniformly random coins r′ ←$ {0, 1}256, since Gbr is used to compute the
ciphertext c∗1 and G(1−b)r is a random oracle independent to Gbr. Since
FrodoPKE is γ-spread, for the key-pair (pk1−b, sk1−b) and message m′, we
have the condition “Enc(pk1−b, m′; r′) = c∗0” to hold with probability ≤ 2−γ

for uniformly random r′. Hence, we have

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ 2−γ.

The rest of the proof follows very similarly to that of Theorem 9, where
we then do the game-hop “G0 → G1” of Theorem 9, skip the “G1 → G2”
hop – since effectively this is covered by our above G0 → G3 hop – and
proceed from “G3” of Theorem 9 from then on, and so on.

Hence, it is not hard to finally arrive at

AdvANO-CCA
FrodoKEMhy(Ahy) ≤ AdvANO-CCA

FrodoKEM(Akem) + 2AdvIND-CCA
FrodoKEM(Akem) + 2−γ

+ 2AdvINT-CTXT
DEM (Adem) + 2CollH

FrodoPKE +
4qH′

2128 + 8qG
√

δ.

At the same time, from Theorems 4 and 11, we note that if the DEM
component is also FROB secure, then the corresponding hybrid PKE scheme
will be strongly robust (i.e., SROB-CCA secure). Hence, our results in this
section give a complete picture of anonymity and robustness properties of
FrodoKEM as well as the hybrid PKE schemes derived from it.
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5.3 kyber

In this section, we establish anonymity and robustness of Kyber – and
the hybrid PKE schemes derived from it – in the QROM. Focusing on
anonymity, as mentioned in Subsection 4.5.1 above, we will work with
Xagawa’s strong pseudorandomness framework [60] which was used to estab-
lish the corresponding property for NTRU [23] – a third-round NIST PQC
finalist that employs the FO ̸⊥m transform.

To be more specific, strong pseudorandomness (i.e., SPR-CCA security)
of “FO ̸⊥m -derived” KEMs in the QROM was already shown in [60]. So at
a high level, we will apply our above “wrapper-based” approach – that
was used to extend IND-CCA security properties of the FO ̸⊥m transform to
FOkyber (see Fig. 3.6) in Section 3.2 – to prove SPR-CCA security of Kyber,
a.k.a. Kyber.KEM, in the QROM. And as shown by Xagawa [60], SPR-CCA
security of a KEM/PKE scheme also implies its ANO-CCA security.

One of the advantages of using this “FO ̸⊥m -based” approach to establish
anonymity of Kyber when compared to an “FO ̸⊥-based” approach used for
FrodoKEM in the previous section is that the strong pseudorandomness
framework does not rely on γ-spreadness of the base PKE scheme. This fact
is helpful because, to the best of our knowledge, γ-spreadness of Kyber’s
base PKE scheme, a.k.a. Kyber.PKE, has not been rigorously analyzed in
the literature – in contrast to FrodoKEM [8].

When it comes to establishing robustness – or more technically, collision-
freeness – of Kyber, we will employ similar techniques that were used to
establish the corresponding property for FrodoKEM in Section 5.2 above;
namely, we will rely on hardness of the claw-finding problem w.r.t. quantum
random oracles (see Lemma 11).

5.3.1 Some More Preliminaries

Here we describe some additional security notions and relevant theorems –
related to Xagawa’s strong pseudorandomness framework discussed above –
that will be primarily used to establish ANO-CCA security of Kyber, and
corresponding hybrid PKE schemes, in the QROM.

5.3.1.1 Public-Key Encryption, Revisited (Again)

Definition 23 (Strong Pseudorandomness of PKE). Given a PKE PKE =
(KGen,Enc,Dec), we define the game for its SPR-CCA security, w.r.t. a simulator
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SPR-CCAAPKE,S
(pk, sk)← KGen

b←$ {0, 1}
(m, st)← ADec⊥ (pk)

c∗0 ← Enc(pk, m)

c∗1 ← S()

b′ ← ADecc∗b (c∗b , st)

return [b′ = b]

SDS-INDAPKE,S
(pk, sk)← KGen

b←$ {0, 1}
m←$M
c∗0 ← Enc(pk, m)

c∗1 ← S()
b′ ← A(pk, c∗b )

return [b′ = b]

Deca(c)

if c = a then return ⊥
m := Dec(sk, c)

return m

Figure 5.7: Security games for strong pseudorandomness and strong disjoint
simulatability of PKE schemes. Note that these games are defined with
respect to a (efficient) simulator S . Also st is some state information
maintained by the adversary A.

S , in Figure 5.7 and the SPR-CCA advantage measure for adversary A against
PKE (and S) as

AdvSPR-CCA
PKE,S (A) =

∣∣∣∣Pr[SPR-CCAAPKE,S = 1]− 1
2

∣∣∣∣ .

Asymptotically speaking, PKE is said to be strongly pseudorandom if there
exists an efficient simulator S such that AdvSPR-CCA

PKE,S (A) is negligible for any
efficient adversary A w.r.t. a security parameter.

Definition 24 (Strong Disjoint Simulatability of PKE [6, 85]). Given a PKE
PKE = (KGen,Enc,Dec), with message space M and encryption randomness
space R, we define the game for its SDS-IND security – w.r.t. a simulator S – in
Figure 5.7 and the SDS-IND advantage measure for adversary A against PKE
(and S) as

AdvSDS-IND
PKE,S (A) =

∣∣∣∣Pr[SDS-INDAPKE,S = 1]− 1
2

∣∣∣∣ .

In addition, we define the (statistical) disjointness measure as

DisjPKE,S = Pr[∃(m, r) ∈ M×R s.t. c := Enc(pk, m; r)

| (pk, sk)← KGen, c← S()].
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SPR-CCAAKEM,S
(pk, sk)← KGen

b←$ {0, 1}
(c∗0 , k∗0)← Encap(pk)

c∗1 ← S()
k∗1 ←$ K

b′ ← ADecapsc∗b (pk, c∗b , k∗b)

return [b′ = b]

SSMT-CCAAKEM,S
(pk, sk)← KGen

b←$ {0, 1}
c∗ ← S()
k∗0 ←$ K
k∗1 := Decap(sk, c∗)

b′ ← ADecapsc∗ (pk, c∗, k∗b)

return [b′ = b]

Decapsa(c)

if c = a then return ⊥
k := Decap(sk, c)

return k

Figure 5.8: Security games for strong pseudorandomness and strong smoothness
of KEMs. Note that these games are defined with respect to a (efficient)
simulator S .

Asymptotically speaking, PKE is said to be strongly disjoint simulatable if
there exists an efficient simulator S such that AdvSDS-IND

PKE,S (A) is negligible for
any efficient adversary A and DisjPKE,S is negligible w.r.t. a security parameter.11

5.3.1.2 Key Encapsulation Mechanism, Revisited

Definition 25 (Strong Pseudorandomness and Smoothness of KEM). Given
a KEM KEM = (KGen,Encap,Decap) with encapsulated key space K, we define
the game for its SPR-CCA, resp. SSMT-CCA, security w.r.t. a simulator S
in Figure 5.8 and the SPR-CCA, resp. SSMT-CCA, advantage measure for
adversary A against KEM (and S) as

Adv(SPR/SSMT)-CCA
KEM,S (A) =

∣∣∣∣Pr[(SPR/SSMT)-CCAAKEM,S = 1]− 1
2

∣∣∣∣ .

Asymptotically speaking, KEM is said to be strongly pseudorandom (respec-
tively, strongly smooth) if there exists an efficient simulator S such that AdvSPR-CCA

KEM,S (A)
(respectively, AdvSSMT-CCA

KEM,S (A)) is negligible for any efficient adversary A w.r.t. a
security parameter.
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otSPR-CCAADEM

k← KGen

b←$ {0, 1}
(m, st)← ADec⊥

c∗0 ← Enc(k, m)

c∗1 ←$ C|m|

b′ ← ADecc∗b (c∗b , st)

return [b′ = b]

Deca(c)

if c = a then return ⊥
m := Dec(sk, c)

return m

Figure 5.9: Security game for one-time strong pseudorandomness of DEMs. Here
st is some state information maintained by the adversary A.

5.3.1.3 Data Encapsulation Mechanism, Revisited (Again)

Definition 26 (One-time Strong Pseudorandomness of DEM). Given a DEM
DEM = (KGen,Enc,Dec) with ciphertext “subspace” Cℓ associated with encryp-
tions of messages with length ℓ, we define the game for its one-time SPR-CCA
(otSPR-CCA) security in Figure 5.9 and the otSPR-CCA advantage measure
for adversary A against DEM as

AdvotSPR-CCA
DEM (A) =

∣∣∣∣Pr[otSPR-CCAADEM = 1]− 1
2

∣∣∣∣ .

5.3.1.4 Useful Theorems

As briefly mentioned in Subsection 4.5.1 above, Xagawa showed in [60]
that SPR-CCA security of KEMs and PKE schemes implies their ANO-CCA
security as well. We now present a more formal statement.

Theorem 13 ( [60, Theorem 2.5]). Let KEM be a KEM and PKE be a PKE
scheme. Then for any ANO-CCA adversary Akem against KEM (resp., Apke
against PKE), and any simulator Skem w.r.t. KEM (resp., Spke w.r.t. PKE), there

11 As described in [6], SDS-IND security is a measure of “ciphertext indistinguishability” of PKE.
Hence informally, strong disjoint simulatability can be seen as ciphertext indistinguishability “plus”
statistical disjointness.
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exist SPR-CCA adversaries Bkem and B′kem against KEM (resp., Bpke and B′pke
against PKE) running in about the same time as Akem (resp., Apke) such that

AdvANO-CCA
KEM (Akem) ≤ AdvSPR-CCA

KEM,Skem
(Bkem) + AdvSPR-CCA

KEM,Skem
(B′kem),

AdvANO-CCA
PKE (Apke) ≤ AdvSPR-CCA

PKE,Spke
(Bpke) + AdvSPR-CCA

PKE,Spke
(B′pke).

The following theorem establishes SPR-CCA security of hybrid PKE
schemes from the corresponding pseudorandom properties of the under-
lying implicit rejection KEM and DEM wherein the KEM is additionally
SSMT-CCA secure.

Theorem 14 ( [60, Theorem 3.2]). Let PKEhy = (KGenhy,Enchy,Dechy)
be a hybrid PKE scheme obtained by composing a δ-correct KEM KEM =
(KGenkem,Encap,Decap) with a DEM DEM = (KGendem,Enc,Dec). Then for
any simulator Skem w.r.t. KEM, there exists a simulator Shy w.r.t. PKEhy where
for any SPR-CCA adversary Ahy against PKEhy, there exist SPR-CCA adversary
Akem and SSMT-CCA adversary Akem against KEM, and otSPR-CCA adversary
Adem against DEM such that

AdvSPR-CCA
PKEhy,Shy

(Ahy) ≤ AdvSPR-CCA
KEM,Skem

(Akem) + AdvSSMT-CCA
KEM,Skem

(Akem)

+ AdvotSPR-CCA
DEM (Adem) + δ.

The running times of Akem, Akem and Adem are the same as that of Ahy.

Remark 3. Note that in the above theorem, we consider SPR-CCA security
and SSMT-CCA security of KEM w.r.t. the same simulator Skem. If KEM is
shown to be SPR-CCA and SSMT-CCA secure w.r.t. different simulators,
then Theorem 14 does not provide any guarantee on the SPR-CCA security
of PKEhy. Fortunately, in our analysis of Kyber that follows, we prove
SPR-CCA and SSMT-CCA security of Kyber.KEM w.r.t. the same simulator
– thereby establishing SPR-CCA security of hybrid PKE schemes derived
from the NIST PQC standard.

The theorem below establishes SPR-CCA security of “FO ̸⊥m -derived” KEMs
(see Fig. 3.1) in the QROM based on strong disjoint-simulatability of the
underlying base PKE scheme.

Theorem 15 (Follows from [60, Theorems 4.1 and D.1]12 ). Given PKE =
(KGen,Enc,Dec) is δ-correct, has message spaceM and ciphertext space C which

12 FO ̸⊥m is composed of two modular FO transforms: namely, the “T” and “U ̸⊥m ” transforms defined
in [4]; [60, Theorem D.1] considers the T transform and [60, Theorem 4.1] considers the U ̸⊥m
transform respectively.
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only depends on the public parameters.13 Then for any SPR-CCA adversary A
against KEM ̸⊥ = FO ̸⊥m [PKE, Gr, Gk] = (KGen′,Encap,Decap) issuing at most
qGr and qGk queries to the quantum random oracles Gr and Gk respectively and at
most qD queries to the (classical) decapsulation oracle, and for any simulator S
w.r.t. PKE, there exist SDS-IND adversary B and OW-CPA adversary B′ against
PKE such that

AdvSPR-CCA
KEM ̸⊥ ,S (A) ≤ AdvSDS-IND

PKE,S (B) + 1
2
DisjPKE1,S + qGr

√
AdvOW-CPA

PKE (B′)

+
2(qGk + qD)√

|M|
+ (2 + 8(qGr + qD + 2)2 + 8(qGr + qGk + 2)2)δ,

where we have the derandomized PKE scheme PKE1 = T[PKE, Gr] (see Fig. 4.9).
Moreover, the running times of B and B′ are the same as that of A.

5.3.2 Strong Disjoint Simulatability of Kyber.PKE

In our following ANO-CCA security analysis of Kyber.KEM and the hybrid
PKE schemes derived from it, we rely on the strong disjoint simulatability
(i.e., SDS-IND security plus statistical disjointness, see Definition 24 above) of
the base Kyber.PKE scheme. Fortunately, we have:

Lemma 13 (informal). Kyber.PKE = (KGen,Enc,Dec) is tightly strong dis-
joint simulatable under the MLWE hardness assumption, in the QROM.

Proof Sketch. Let S be a simulator w.r.t. Kyber.PKE which outputs a uni-
formly random value from the ciphertext space C of Kyber.PKE. (Note that
C is a set of bit strings with a fixed pre-specified length [11, Section 1.2], and
hence, is efficiently samplable.) The above observation of Kyber.PKE’s public-
keys and ciphertexts being pseudorandom under the MLWE assumption
can be used in a straightforward manner to show that Kyber.PKE is tightly
SDS-IND secure w.r.t. S (cf. Definition 24) under the MLWE hardness
assumption – as also noted in [11, Section 4.3.2].

Coming to the statistical disjointness of Kyber.PKE w.r.t. S (cf. Defini-
tion 24), letM andR additionally denote the message space and encryption
randomness space of Kyber.PKE respectively; also let Enc(pk,M) denote
the set of valid ciphertexts c of Kyber.PKE where there exists m ∈ M and
r ∈ R such that c = Enc(pk, m; r). Now it is not hard to see that we have
DisjKyber.PKE,S ≤

|Enc(pk,M)|
|C| ≤ |M||R||C| . Note that across all parameter sets of

13 Fortunately, this is the case for the base Kyber.PKE scheme, as can be seen in [11].
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Kyber [11, Section 1], we have |C| ≥ 26144 and |M×R| = 2512. Hence, for
all intents and purposes, DisjKyber.PKE,S can be considered to be negligible.

5.3.3 Anonymity and Collision-Freeness of Kyber.KEM

Towards establishing ANO-CCA security of Kyber.KEM, we first prove its
concrete SPR-CCA security in the QROM while relying on the strong disjoint
simulatability (i.e., SDS-IND security and statistical disjointness; cf. Lemma 13)
of the base Kyber.PKE scheme.

Theorem 16. Given the base PKE scheme Kyber.PKE = (KGen,Enc,Dec) is
δ-correct, let S be a simulator w.r.t. Kyber.PKE which outputs a uniformly random
value from the ciphertext space of Kyber.PKE. Then for any SPR-CCA adversary
A against Kyber.KEM = (KGen′,Encap,Decap) issuing at most qD classical
queries to the decapsulation oracles, and at most qG, qH and qH′ queries to the
quantum random oracles G, H and H′ respectively, there exists an IND-CPA
adversary B and a SDS-IND adversary B′ against Kyber.PKE such that

AdvSPR-CCA
Kyber.KEM,S (A) ≤ qG

√
AdvIND-CPA

Kyber.PKE(B) +
1

2256 +
1
2
DisjKyber.PKE,S

+ AdvSDS-IND
Kyber.PKE,S (B′) + (2 + 8(qG + qD + 2)2 + 8(2qG + 2)2)δ

+
2(qH′ + qD)

2128 +
C(qH + 1)3

2256 +
qH + 7qH′

2128 ,

where C (< 648) is the constant from Lemma 6, and the running times of B and
B′ is about the same as that of A.

The proof follows quite closely to that of IND-CCA security of Kyber.KEM
in the QROM above (Theorem 2). We will focus on the main differences in
our SPR-CCA security analysis below.

Proof. Same as in our proof of IND-CCA security for Kyber.KEM (Theo-
rem 2), we first consider SPR-CCA security of the “intermediate” scheme
Kyber.KEM = FOKyber

pre [Kyber.PKE, G, H, H′] = (KGen
′,Encap,Decap) (see

Fig. 3.7) in the QROM.
Denote ΩG, ΩH, ΩH′ , ΩH′′ and ΩH to be the set of all functions G :
{0, 1}512 → {0, 1}512, H : {0, 1}256 ∪ PK ∪ C → {0, 1}256, H′ : {0, 1}256 ×
({0, 1}256∪C)→ {0, 1}256, H′′ : {0, 1}256∪C → {0, 1}256 and H : {0, 1}256 →
{0, 1}256 respectively, where PK is the space of all Kyber.PKE public keys
and C is the ciphertext space of Kyber.PKE.
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Games G0 – G2

1 : G ←$ ΩG; H ←$ ΩH; H′ ←$ ΩH′

2 : H′′ ←$ ΩH′′ ; H ←$ ΩH

3 : (pk, sk′)← KGen
′

4 : (c∗0 , k
∗
0)← Encap(pk)

5 : c∗1 ← S()

6 : k
∗
1 ←$ {0, 1}256

7 : b←$ {0, 1}

8 : b′ ← AG,H,H′ ,Decapsc∗ (pk, c∗b , k
∗
b )

9 : return [b′ = b]

Decapsa(c) // c ̸= a

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′)← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return k
′

7 : else return H′(s, c) // G0

8 : else return H′′(c) // G1

9 : else return H(H(c)) // G2

Figure 5.10: Games G0 – G2 for the proof of Theorem 16. Here H′′ : {0, 1}256 ∪
C → {0, 1}256 and H : {0, 1}256 → {0, 1}256 are fresh internal random
oracles, i.e., not directly accessible to A.

Let A be an SPR-CCA adversary against Kyber.KEM w.r.t. simulator S
(described above) issuing at most q′D classical queries to the decapsulation
oracles, and q′H and q′H′ quantum queries to the random oracles H and
H′ respectively. Consider the sequence of games G0 – G2 described in
Figure 5.10. It is straightforward to obtain the following based on our
IND-CCA security analysis of Kyber.KEM (Inequality (3.1)) in the proof of
Theorem 2 above.∣∣∣Pr[G2 = 1]− 1

2

∣∣∣ ≤ AdvSPR-CCA
Kyber.KEM,S (A) +

2q′H′
2128 +

C(q′H + q′D + 1)3

2256 . (5.1)

Now we return to proving SPR-CCA security of the actual Kyber.KEM.
Let A be an SPR-CCA adversary against Kyber.KEM w.r.t. S issuing at most
qD classical queries to the decapsulation oracles, and at most qG, qH and qH′

quantum queries to the random oracles G, H and H′ respectively. Consider
the sequence of games G0 – G7 described in Fig. 5.11. These games are quite
similar to the ones described in Fig. 3.9 in our IND-CCA security proof.

Game G0: This game is the SPR-CCA game for Kyber.KEM with the “real”
ciphertext c∗ and “real” encapsulated key k∗ where (c∗, k∗)← Encap(pk).

Now note that the games G0 – G3 in Figure 5.11 are essentially identical
to the games “G0 – G3” defined in Figure 3.9. Hence, from our analysis of
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Games G0 – G7

1 : G ←$ ΩG; H ←$ ΩH; H′ ←$ ΩH′

2 : H′′ ←$ ΩH′′ ; H ←$ ΩH;

3 : (pk, sk)← KGen′; h← H(pk)

4 : m∗ ←$ {0, 1}256

5 : m∗ ← H(m∗) // G0

6 : (k
∗
0 , r∗)← G(m∗, h); k

∗
1 ←$ {0, 1}256

7 : c∗ ← Enc(pk, m∗; r∗) // G0 – G3

8 : c∗ ← S() // G4 – G7

9 : k∗ ← H′(k
∗
0 , H(c∗)) // G0 – G3

10 : k∗ ← H′(k
∗
1 , H(c∗)) // G4

11 : k∗ ←$ {0, 1}256 // G5 – G7

12 : b′ ← AG,H,H′ ,Decapsc∗ (pk, c∗, k∗)

13 : return b′

Decapsa(c) // c ̸= a

1 : Parse sk′ = (sk, pk, h, s)

2 : m′ ← Dec(sk, c)

3 : (k
′
, r′)← G(m′, h)

4 : c′ ← Enc(pk, m′; r′)

5 : if c′ = c then

6 : return H′(k
′
, H(c))

7 : else

8 : return H′(s, H(c)) // G0 – G1, G7

9 : return H′′(H(c)) // G2,G6

10 : return H′(H(H(c)), H(c)) // G3–G5

Figure 5.11: Games G0 – G7 for the proof of Theorem 16.

these game hops in the above IND-CCA security proof, it is not hard to
obtain

|Pr[G0 = 1]− Pr[G3 = 1]| ≤ 2qH

2128 +
4qH′

2128 .

Game G4: Relative to G3 (and G0), we modify how the challenge ciphertext
c∗ and corresponding encapsulated key k∗ are generated. In this game, we
generate (c∗, k∗) as c∗ ← S() and k∗ ← H′(k

∗
1 , H(c∗)) instead, where S

is the simulator described above and k
∗
1 ←$ {0, 1}256. Here we use our

SPR-CCA security analysis of the intermediate Kyber.KEM.
To be specific, recall that in the corresponding “G3 → G4” hop in our

above IND-CCA security proof of Kyber.KEM, we showed a reduction to
IND-CCA security of the underlying Kyber.KEM. In a similar way, it is
straightforward to construct an SPR-CCA adversary A against Kyber.KEM
w.r.t. the same S above such that

|Pr[G3 = 1]− Pr[G4 = 1]| = 2 ·
∣∣∣Pr[G2 = 1]− 1

2

∣∣∣
≤ 2AdvSPR-CCA

Kyber.KEM,S (A) +
4qH′

2128 +
2C(qH + 1)3

2256 ,
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where we used Inequality (5.1) w.r.t. our analysis of Kyber.KEM.
Game G5: We further modify how k∗ is generated. In this game, k∗ is

chosen from {0, 1}256 uniformly at random. Similar to our analysis of the
“G4 → G5” hop in the proof of Theorem 2, we obtain the following by
applying Lemma 2,

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ 2qH′

2128 .

Game G6: We modify the decapsulation oracle such that the oracle rejects
an invalid ciphertext c by returning H′′(H(c)). In a sense, we are revert-
ing the changes introduced in the “G2 → G3” hop above in the proof of
Theorem 2. Hence, it is not hard to obtain

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ 2qH′

2128 .

Game G7: We again modify the decapsulation oracle such that the oracle
returns H′(s, H(c)) for an invalid ciphertext c. From our analysis of the
“G1 → G2” hop above in the proof of Theorem 2, we have

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 2qH′

2128 .

Note that G7 is the SPR-CCA game for Kyber.KEM where A gets a “ran-
dom” ciphertext c∗ ← S() and “random” encapsulated key k∗ ←$ {0, 1}256.
Hence, by summing up the above bounds, we obtain

2AdvSPR-CCA
Kyber.KEM,S (A) = |Pr[G0 = 1]− Pr[G7 = 1]|

≤ 2AdvSPR-CCA
Kyber.KEM,S (A) +

2C(qH + 1)3

2256 +
2qH + 14qH′

2128 .

Finally, we replace the term “AdvSPR-CCA
Kyber.KEM,S (A)” with the existing SPR-

CCA security bounds on the FO ̸⊥m transform in the QROM derived in [60].
Because as previously noted in our proof of Theorem 2 above, the interme-
diate FO ̸⊥

′
pre transform is essentially identical to FO ̸⊥m in the context of “single

key-pair notions” such as IND-CCA security and SPR-CCA security. Hence,
by applying Theorem 15 w.r.t. SPR-CCA security of “FO ̸⊥m -derived” KEMs in
the QROM to Kyber.KEM, we have that there exists an IND-CPA adversary
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B and a SDS-IND adversary B′ against Kyber.PKE w.r.t. S , running in about
the same time as that of A (and A), such that14

AdvSPR-CCA
Kyber.KEM,S (A) ≤ qG

√
AdvIND-CPA

Kyber.PKE(B) +
1

2256 +
1
2
DisjKyber.PKE,S

+ AdvSDS-IND
Kyber.PKE,S (B′) +

2(qH′ + qD)

2128 + (2 + 8(qG + qD + 2)2 + 8(2qG + 2)2)δ.

Combining the last two inequalities finishes the proof.

Note that our above SPR-CCA security analysis of Kyber.KEM relies
on δ-correctness of the base Kyber.PKE scheme. However as mentioned
in Subsection 3.2.3 related to our IND-CCA security analysis of Kyber,
this particular δ-correctness property of Kyber.PKE has been rigorously
analyzed in [11, 61].

Now following Theorem 13 which states that the SPR-CCA security
of a KEM implies its ANO-CCA security, and following the IND-CPA
security ([11, Theorem 1]) and strong disjoint simulatability (Lemma 13) of
Kyber.PKE under the MLWE hardness assumption, we have:

Corollary 1 (informal). Kyber.KEM is ANO-CCA secure in the QROM, under
the MLWE hardness assumption.

Remark 4. Note that our above SPR-CCA/ANO-CCA security analysis of
Kyber.KEM in the QROM is non-tight. This is due to the existing non-tight
SPR-CCA security proof for FO ̸⊥m -derived KEMs in [60] (i.e., Theorem 15).
The author of [60] also discussed difficulties in using alternative proof
techniques (i.e., tighter OW2H lemmas in [51, 52]) to obtain a tighter proof
of SPR-CCA security w.r.t. the FO ̸⊥m transform in the QROM. They also left
the task of overcoming these difficulties as an open problem; we do the
same as well, in the context of obtaining tighter proofs of post-quantum
ANO-CCA security for Kyber.

Coming to SCFR-CCA security of Kyber.KEM, we can apply similar proof
strategies that were used to establish strong collision-freeness of FO ̸⊥-
based KEMs (Theorem 8) and FrodoKEM (Theorem 11) in the QROM. The

14 Technically, Theorem 15 includes statistical disjointness (cf. Definition 24) of a derandomized
version of the base PKE scheme in its SPR-CCA security bounds on the final KEM. Roughly
speaking, in such a derandomized PKE, the random coins used to encrypt a message m is
obtained by first hashing m. But from our proof sketch of Lemma 13, it is not hard to see
that statistical disjointness of the derandomized Kyber.PKE is trivially upper-bounded by
disjointness of the original Kyber.PKE, i.e., DisjKyber.PKE,S . This is because our simulator S just
outputs a uniformly random Kyber.PKE ciphertext.
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corresponding proof for Kyber, on a high level, uses the fact that the hash
of public-keys are included in the KEM’s key-derivation step (in contrast to
Classic McEliece). This allows us to establish SCFR-CCA security of Kyber
by mainly relying on properties of quantum random oracles G and H′:
namely, claw-freeness and collision-resistance.

Theorem 17. For any SCFR-CCA adversaryA against the scheme Kyber.KEM =
(KGen′,Encap,Decap) issuing at most qG and qH′ queries to the quantum random
oracle G and H′ respectively, we have

AdvSCFR-CCA
Kyber.KEM(A) ≤ C(qG + 1)3

2256 +
4C(qH′ + 1)3

2256 +
1

2256 +
4qH′

2128 .

where C (< 648) is the constant from Lemma 11.

Proof. Denote ΩG, ΩH, ΩH′ and ΩH to be the set of all functions G :
{0, 1}512 → {0, 1}512, H : PK ∪ C → {0, 1}256, H′ : {0, 1}512 → {0, 1}256

and H : {0, 1}256 → {0, 1}256 respectively, where PK is the space of
all Kyber.PKE public keys and C is the ciphertext space of Kyber.PKE =
(KGen,Enc,Dec).

Let A be an adversary in the SCFR-CCA game for Kyber.KEM issuing
at most qG and qH′ quantum queries to the random oracle G and H′

respectively.
The structure of the proof is very similar to that of Theorem 10. Namely,

we do the sequence of game-hops G0 → G3 as described in Figure 5.12.
Since this sequence is similar to the game-hops “G0 → G3” in the proof of
Theorem 10, by a similar analysis we obtain

|Pr[G0 = 1]− Pr[G3 = 1]| ≤ CollH
Kyber.PKE +

4qH′

2128 ,

where CollH
Kyber.PKE is probability of the event “H(pk0) = H(pk1)” with pk0

and pk1 being two honestly-generated public keys of Kyber.PKE. Now since
H is modelled as a random oracle (in contrast to our analysis of FrodoKEM,
see Footnote 7 of this chapter), it is easy to see that CollH

Kyber.PKE ≤ 1
2256 .

Note that the game G0 is exactly the SCFR-CCA game for Kyber.KEM.
Hence, we have

Pr[G0 = 1] = AdvSCFR-CCA
Kyber.KEM(A).

Coming to the game G3, note that the adversary A wins the game if
it outputs a ciphertext c such that Decaps⊥(0, c) = Decaps⊥(1, c). Let
m′0 = Dec(sk0, c), m′1 = Dec(sk1, c), k0

′ ← G0k(m′0) and k1
′ ← G1k(m′1).

There are four disjoint cases that need to be considered w.r.t. this winning
condition:
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Games G0 − G3

1 : H ←$ ΩH; H′ ←$ ΩH′

2 : G2 ←$ ΩG; G0r, G1r ←$ ΩH

3 : G0k, G1k ←$ ΩH

4 : Hrej
0 , Hrej

1 ←$ ΩH

5 : (pk0, sk′0), (pk1, sk′1)← KGen′

6 : inp← (pk0, pk1)

7 : c← AG,H′ ,Decaps⊥ (inp)

8 : k0 = Decaps⊥(0, c)

9 : k1 = Decaps⊥(1, c)

10 : return [k0 = k1 ̸= ⊥]

Decapsa(0, c) // c ̸= a

1 : Parse sk′0 = (sk0, pk0, h0, s0)

2 : m′ = Dec(sk0, c)

3 : (k
′
, r′)← G(m′, h0) // G0 −G2

4 : r′ ← G0r(m′) // G3

5 : k
′ ← G0k(m

′) // G3

6 : if Enc(pk0, m′; r′) = c then

7 : return H′(k
′
, H(c))

8 : else return H′(s0, H(c)) // G0

9 : else return Hrej
0 (H(c)) // G1 - G3

G(m, h)

1 : if h = H(pk0) then // G2-G3

2 : r ← G0r(m) // G2 - G3

3 : k← G0k(m) // G2 - G3

4 : elseif h = H(pk1) then // G2-G3

5 : r ← G1r(m) // G2 - G3

6 : k← G1k(m) // G2 - G3

7 : else (k, r)← G2(m, h)

8 : return (k, r)

Decapsa(1, c) // c ̸= a

1 : Parse sk′1 = (sk1, pk1, h1, s1)

2 : m′ = Dec(sk1, c)

3 : (k
′
, r′)← G(m′, h1) // G0 −G2

4 : r′ ← G1r(m′) // G3

5 : k
′ ← G1k(m

′) // G3

6 : if Enc(pk1, m′; r′) = c then

7 : return H′(k
′
, H(c))

8 : else return H′(s1, H(c)) // G0

9 : else return Hrej
1 (H(c)) // G1 - G3

Figure 5.12: Games G0 – G3 for the proof of Theorem 17. Here Enc and Dec are
the encryption and decryption algorithms of Kyber.PKE.
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• Decaps⊥(0, c) = H′(k0
′
, H(c)) ∧Decaps⊥(1, c) = H′(k1

′
, H(c)):

– k0
′ ̸= k1

′
: Winning condition in this case translates to H′(k0

′
, H(c)) =

H′(k1
′
, H(c)), where k0

′ ̸= k1
′
. This implies a collision in the

QRO H′. Hence using Lemma 6, we can bound the probability

of this sub-event by C(qH′+1)3

2256 via a straightforward reduction to
the collision-resistance of H′.

– k0
′
= k1

′
: In this sub-case, note that (m′0, m′1) is a claw w.r.t. the

pair of quantum random oracles G0k and G1k. Using Lemma 11,

we can bound the probability of this event by C(qG+1)3

2256 via a
straightforward reduction to the claw-finding problem w.r.t. the
instance (G0k, G1k).

• Decaps⊥(0, c) = H′(k0
′
, H(c)) ∧Decaps⊥(1, c) = Hrej

1 (H(c)): In this

case, the winning condition translates to H′(k0
′
, H(c)) = Hrej

1 (H(c)).
Note that then ((k0

′
, H(c)), H(c)) is a claw w.r.t. the pair of QROs

H′ and Hrej
1 . Using Lemma 11, we can bound the probability of this

event by C(qH′+1)3

2256 via a straightforward reduction to the claw-finding

problem w.r.t. the instance (H′, Hrej
1 ).

• Decaps⊥(0, c) = Hrej
0 (H(c)) ∧Decaps⊥(1, c) = H′(k1

′
, H(c)): The anal-

ysis here will be the same as the previous case.

• Decaps⊥(0, c) = Hrej
0 (H(c)) ∧Decaps⊥(1, c) = Hrej

1 (H(c)): In this case,

the winning condition translates to Hrej
0 (H(c)) = Hrej

1 (H(c)). Note

that (H(c), H(c)) is then a claw w.r.t. the pair of random oracles Hrej
0

and Hrej
1 . Using Lemma 11, we can bound the probability of this

event by C(qH′+1)3

2256 via a straightforward reduction to the claw-finding

problem w.r.t. the instance (Hrej
0 , Hrej

1 ).

From the above analysis, we have

Pr[G3 = 1] ≤ C(qG + 1)3

2256 +
4C(qH′ + 1)3

2256 .

Hence, we finally get
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AdvSCFR-CCA
Kyber.KEM(A) ≤ C(qG + 1)3

2256 +
4C(qH′ + 1)3

2256 +
1

2256 +
4qH′

2128 .

5.3.4 Anonymity and Robustness of Hybrid PKE Derived from Kyber.KEM

We first focus on anonymity, or more specifically, SPR-CCA security of hy-
brid PKE schemes obtained from Kyber.KEM via the KEM-DEM paradigm.
From Theorem 14, we have that composing a one-time strongly pseudorandom
(or, SPR-otCCA secure; see Definition 26) DEM with an implicitly-rejecting
KEM which is both SPR-CCA secure and strongly smooth (or, SSMT-CCA
secure; see Definition 25) results in an SPR-CCA secure hybrid PKE scheme.
Since we already established SPR-CCA security of Kyber.KEM in Subsec-
tion 5.3.3 above, we now prove its concrete SSMT-CCA security in the
QROM while relying on statistical disjointness of the base Kyber.PKE.

Theorem 18. Let S be a simulator w.r.t. Kyber.PKE = (KGen,Enc,Dec) which
outputs a uniformly random value from the ciphertext space of Kyber.PKE =
(KGen,Enc,Dec). For any SSMT-CCA adversaryA against the scheme Kyber.KEM =
(KGen′,Encap,Decap) w.r.t. S issuing at most qH and qH′ queries to the quantum
random oracles H and H′ respectively, we have

AdvSSMT-CCA
Kyber.KEM,S (A) ≤ DisjKyber.PKE,S +

2qH′ + 1
2128 +

C(qH + 1)3

2 · 2256 ,

where C (< 648) is the constant from Lemma 6.

Proof. Denote ΩG, ΩH, ΩH′ and ΩH′′ to be the set of all functions G :
{0, 1}512 → {0, 1}512, H : PK ∪ C → {0, 1}256, H′ : {0, 1}512 → {0, 1}256

and H′′ : {0, 1}256 → {0, 1}256 respectively, where PK is the space of all
Kyber.PKE public keys and C is the ciphertext space of Kyber.PKE.

Let A be an adversary in the SSMT-CCA game for Kyber.KEM issuing
at most qH and qH′ quantum queries to the random oracles H and H′

respectively. Consider the sequence of game-hops G0 → G6 described in
Figure 5.13.

Game G0: This game is equivalent to the SSMT-CCA game for Kyber.KEM
with the random encapsulated key k∗ ←$ {0, 1}256 and simulated ciphertext
c∗ ← S().
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Games G0 – G6

1 : G ←$ ΩG; H ←$ ΩH

2 : H′ ←$ ΩH′ ; H′′ ←$ ΩH′′

3 : (pk, sk)← KGen′

4 : c∗ ← S() // G0, G6

5 : c∗ ← S() \ Enc(pk,M) // G1 – G5

6 : k∗ ←$ {0, 1}256 // G0 – G2

7 : k∗ ← H′′(H(c∗)) // G3

8 : k∗ ← H′(s, H(c∗)) // G4

9 : k∗ := Decap(sk′, c∗) // G5 – G6

10 : b′ ← AG,H,H′ ,Decapsc∗ (pk, c∗, k∗)

11 : return b′

Decapsa(c) // c ̸= a

1 : Parse sk′ = (sk, pk, h, s)

2 : if c = c∗ then return ⊥
3 : m′ := Dec(sk, c)

4 : (k
′
, r′)← G(m′, h)

5 : c′ ← Enc(pk, m′; r′)

6 : if c′ = c then

7 : return H′(k
′
, H(c))

8 : else

9 : return H′(s, H(c)) // G0–G1, G4–G6

10 : return H′′(H(c)) // G2 – G3

Figure 5.13: Games G0 – G6 for the proof of Theorem 18.

Game G1: We then modify how c∗ is generated. In this game, c∗ is gen-
erated by S() conditioned on that c∗ is outside of the set Enc(pk,M)15.
More specifically, the game does a (potentially inefficient) check on whether
c∗ ∈ Enc(pk,M) and aborts if it is the case. Note that this potential in-
efficiency does not really matter in our analysis since we will bound the
difference between subsequent games using statistical bounds anyway.

Coming to the difference between games G0 and G1, it is bounded by the
value DisjKyber.PKE,S , and we have

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ DisjKyber.PKE,S .

Game G2: We next modify the “implicit rejection” of the decapsulation
oracle. In this game, the oracle rejects by outputting H′′(H(c)) instead of
H′(s, H(c)), where H′′ is an internal and independent random oracle not
directly accessible to A. From the “G1 → G2” hop in the proof of Theorem 2

above, we obtain the following via Lemma 2:

|Pr[G1 = 1]− Pr[G2 = 1]| ≤ 2qH′

2128 .

15 Recall that Enc(pk,M) denotes the set of valid ciphertexts c of Kyber.PKE where there exists
m ∈ M and r ∈ R such that c = Enc(pk, m; r); hereM and R denote the message space and
encryption randomness space of Kyber.PKE respectively.
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Game G3: We next modify how k∗ is generated. In this game, k∗ is computed
as H′′(H(c∗)) instead of being chosen uniformly at random.

Notice that the adversary can only access H′′ via the decapsulation oracle.
Thus, if the adversary cannot query c ̸= c∗ such that H(c) = H(c∗), then
the adversary cannot obtain any information on H′′(H(c∗)) and this value
looks completely random. Similar to the “G1 → G2” hop above in our IND-
CCA security proof of Kyber.KEM, we can bound the difference between
G2 and G3 via a straightforward reduction to the collision resistance of H.
Hence, we have from Lemma 6

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ C(qH + 1)3

2256 .

Game G4: We next replace all invocations of H′′(H(·)) in this game –
particularly, during generation of k∗ and decapsulation of ciphertexts –
with H′(s, H(·)). Again from the “G1 → G2” hop above, we can use the
pseudorandomness of H′ (Lemma 2) to obtain

|Pr[G3 = 1]− Pr[G4 = 1]| ≤ 2(qH′ + 1)
2128 .

Game G5: In this game, we compute k∗ as k∗ := Decap(sk′, c∗) instead
of k∗ ← H′(s, H(c∗)). Anyways the result of Decap(sk′, c∗) in G5 will be
equal to H′(s, H(c∗)) as in G4. Because note that c∗ is an invalid ciphertext
since it is outside of Enc(pk,M). Thus, even if the decryption of c∗ yields
some plaintext m′, the re-encrypted ciphertext c′ = Enc(pk, m′; r′) cannot
be equivalent to c∗. Hence, we have

Pr[G4 = 1] = Pr[G5 = 1].

Game G6: We finally modify how c∗ is generated. In this game, c∗

is generated by S() (and there is no check by the game on whether
c∗ ∈ Enc(pk,M)). We note that this game is the SSMT-CCA game for
Kyber.KEM with simulated ciphertext c∗ ← S() and decapsulated key
k∗ := Decap(sk, c∗).

The difference is again bounded by DisjKyber.PKE,S , and we have

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ DisjKyber.PKE,S .

Summing up the above differences, we have

2AdvSSMT-CCA
Kyber.KEM(A) = |Pr[G0 = 1]− Pr[G6 = 1]|

≤ 2DisjKyber.PKE,S +
4qH′ + 2

2128 +
C(qH + 1)3

2256 .
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Coming to robustness, it follows from Theorems 4 and 17 that composing
Kyber.KEM with an FROB secure DEM (see Definition 19) will result in an
SROB-CCA secure hybrid PKE scheme. In other words, composing Kyber
with a one-time strongly pseudorandom and robust DEM will result in a
post-quantum strongly anonymous and strongly robust PKE scheme.

Remark 5. As mentioned in Subsection 3.2.3 (Remark 2), Saber [62] – a NIST
PQC third-round finalist – uses the FOkyber transform in its KEM construc-
tion as well. Therefore, our above results on anonymity and robustness of
Kyber in the post-quantum setting also apply to Saber in a similar manner.

5.4 summary

In this chapter, we applied our generic results of Chapter 4 on anonymity
and robustness of implicit rejection KEMs, and corresponding hybrid PKE
schemes, to three NIST PQC KEMs: Classic McEliece, FrodoKEM and Ky-
ber. For Classic McEliece, we highlighted a surprising property which
shows that the KEM does not lead to robust PKE schemes via the stan-
dard KEM-DEM paradigm. However, since Xagawa [60] was able to estab-
lish anonymity of hybrid PKE schemes derived from Classic McEliece, it
would be interesting to find applications for such schemes which require
anonymity but where a lack of robustness is not an issue.

On the positive side, we showed that FrodoKEM and Kyber can be used
to build anonymous and robust hybrid PKE schemes in the post-quantum
setting. For FrodoKEM, we had to adapt our generic analysis of FO ̸⊥ in
Chapter 4 to the specific FO-variant used by the KEM. Whereas for Kyber,
we had to use newer techniques – i.e., Xagawa’s strong pseudorandomness
framework [60] – in our analysis. We hope that these results provide further
confidence to practitioners in using the new NIST standard Kyber and the
BSI-recommended FrodoKEM not only in general-purpose applications
that need IND-CCA security but also in emerging modern applications that
require anonymity and robustness.
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F U N C T I O N A L I T Y E N H A N C E M E N T S : E F F I C I E N T
T H R E S H O L D D E C RY P T I O N

The early days of post-quantum cryptography – especially in the context
of NIST’s PQC standardization process – looked at how to build basic
primitives such as simple public-key encryption or digital signatures. How-
ever, our existing (pre-quantum) public-key algorithms often provide more
advanced functionalities than what is offered by basic public-key primitives.
For example, one may have so-called group signatures, identity-based encryp-
tion or threshold public-key cryptosystems, just to name a few. Focusing on the
last class of algorithms, in a threshold public-key cryptosystem, roughly
speaking, the underlying secret key is split into two or more key-shares
across different users. The sharing is done in such a way so that even if
some number of shares (below a certain threshold) are compromised, no
information is leaked about the original key. Hence, this threshold approach
significantly improves the confidentiality of secret keys in practical cryp-
tographic implementations. At the same time, an important advantage of
this approach is that the secret-key shares can be separately used, where
the “distributed” operation across multiple users with respective shares
results in the correct output, as if the original secret key was used by an
equivalent single-user cryptographic algorithm. In fact, NIST has initiated
plans to standardize threshold schemes for (potentially quantum-resistant)
cryptographic primitives [24]. In view of this, we consider threshold – or,
distributed – decryption for IND-CCA secure hybrid public-key encryption
in this chapter. Such threshold PKE schemes have various applications: for
example, they are used in e-voting systems [86, 87], blockchain systems [88],
and side-channel resistant implementations of cryptosystems [89].

Even in the context of pre-quantum cryptography, distributed decryption
for hybrid systems is problematic for many schemes, since to maintain
IND-CCA security one would need to apply a distributed decryption
procedure to the symmetric DEM component, which is rather expensive
for long messages. There is an additional problem when we consider the
post-quantum setting. Namely, as mentioned in Chapter 3, most NIST PQC
candidates for public-key encryption construct a hybrid scheme by first
building a OW-/IND-CPA secure PKE scheme and then creating an IND-
CCA hybrid scheme using the Fujisaki-Okamoto (FO) transform [1, 4] in
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conjunction with the standard KEM-DEM paradigm [15]. However, the
problem with the FO design pattern is that the decryption procedure needs
to perform a hash to obtain the random coins used for encryption for the
“re-encryption check”. And this can be a complicated process to perform
in a threshold manner for the lattice-based schemes – e.g., Kyber [11],
FrodoKEM [16], Saber [62] – especially if this involves sampling discrete
Gaussians or other distributions which are not compatible with whichever
underlying methodology one is using to perform the threshold decryption.

In prior work [90], a non-hybrid lattice-based encryption scheme is given
with a corresponding secure distributed decryption protocol. But the en-
cryption scheme is only IND-CPA secure. In [91], a generic procedure for
obtaining an arbitrary threshold variant of any functionality is provided;
however the construction makes use of fully homomorphic encryption, and
hence, is not very practical. Coming to work that relates to NIST’s PQC
standardization process, a distributed decryption operation was given for
the first-round candidate LIMA [92] in [93]; more specifically, the operation
was provided for the base (non-hybrid) PKE scheme underlying LIMA. An
outline to “thresholdize” the hybrid PKE schemes obtained from LIMA was
also given in [93]. However, the instantiation would not preserve the CCA
security guarantees of the hybrid construction. Also from a performance
perspective, the problem with the distributed decryption of LIMA was that
it is a scheme based on the FO transform. And as mentioned above, the
secure evaluation of the hash function and re-encryption operation during
decryption is costly in the distributed setting.

The main contribution of this chapter is a generic transform which
supports distributed decryption for hybrid PKE schemes and provides
IND-CCA security in a post-quantum setting (i.e., in the QROM). More
specifically we use a generic multi-party computation (MPC) framework to
perform the distributed decryption, and the decryption algorithm provided
by our transform is efficient within this framework. Our transform deviates
from the above “FO + KEM-DEM” paradigm, and instead can be seen as
closely related to the so-called Tag-KEM framework [22]. The key take-away
from our generic hybrid construction is that the DEM component can be
any one-time IND-CPA secure symmetric encryption scheme, and the PKE
scheme underlying the KEM component can be any rigid1 deterministic
OW-CPA secure scheme which is perfectly correct. We also discuss how
to extend the security analysis of our transform, in a non-generic manner,

1 Recall that a deterministic PKE scheme is said to be rigid if decryption of a ciphertext which
is not the output of an encryption operation always returns ⊥; see also Definition 4.
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to PKE schemes that are not perfectly correct. Regarding the potential
applicability of our transform to NIST PQC schemes, it is worth pointing
out that the fourth-round candidate Classic McEliece [21] and the third-
round finalist NTRU [23] use deterministic, rigid and perfectly correct base
PKE schemes in their corresponding KEM constructions.

chapter organization. Section 6.1 contains some MPC-related pre-
liminaries that are relevant to this chapter. In Section 6.2, we discuss prob-
lems with prior frameworks in the literature (i.e., the KEM-DEM frame-
work [15] and Tag-KEM framework [22]) in the context of obtaining post-
quantum secure hybrid PKE schemes with efficient distributed decryption;
we then provide a high-level overview of our new framework, simply called
“Hybrid”, which solves these problems. A detailed description of our Hybrid
transform, and the accompanying formal security analysis in the QROM, is
presented in Section 6.3.

6.1 mpc preliminaries

In the following, we describe some MPC-related concepts – with a particular
focus on threshold cryptography – that are relevant to understand the
results of this chapter. However, we consider a detailed discussion on MPC
“as a whole” to be beyond the scope of this thesis, and instead refer the
reader to standard textbooks on MPC (e.g., [46, 94, 95]).

6.1.1 PKE With Distributed Decryption

The goal of our work is to produce threshold public-key encryption for long
messages; namely, we would want to share the decryption key among a set
of entities so that a given subset needs to come together to decrypt. Given
a set of n parties P = {P1, . . . , Pn}, we consider so-called access structures A
consisting of a monotonically increasing set of subsets of 2P . A set S is said
to be qualified if S ∈ A, and unqualified otherwise.

Now given a PKE scheme PKE = (KGen,Enc,Dec), we say that the
scheme admits a distributed decryption functionality for an access structure
A, if there are two n-party protocols ΠKGen and ΠDec: the protocol ΠKGen

produces for each party some data ski which are shares of a valid secret
key sk with respect to KGen, and the protocol ΠDec on input an agreed
ciphertext c from all parties in S ∈ A, and the value ski from all parties in
S, will output the value m = Dec(sk, c).
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The distributed decryption protocols are said to be secure in the IND-
ATK sense (ATK ∈ {CPA, CCA}) if an unqualified set of adversarial parties
cannot, while interacting with a qualified set of parties, break the IND-ATK
security of the underlying encryption scheme. This security definition can
be made more formal by saying that the distributed decryption protocol
should act like an ideal decryption functionality; see e.g., [96, 97] for a
specific instantiation.

We shall assume an actively secure MPC protocol for the access structure
A, and will then construct an algorithm which implements the algorithm
Dec within the MPC protocol. Thus it automatically becomes a distributed
protocol ΠDec for the decryption functionality, and its security is inherited
from the underlying MPC protocol. More concretely, our methodology uses
a generic actively-secure-with-abort2 MPC functionality defined via the
so-called Linear Secret Sharing (LSS) over a finite field.

Now the challenging part is to develop an encryption scheme PKE – and
the corresponding instantiation of Dec – so as to enable the underlying
MPC system to provide an efficient distributed implementation. We will do
exactly this in the subsequent sections. But it is also worth pointing out that
because of our reliance on generic MPC techniques, our approach does not
minimize the level of interaction needed between parties in the threshold
decryption procedure. Hence, an open problem would be to develop a
methodology, or a concrete scheme, which can utilize minimal amount of
communication possible by potentially using MPC in a non-generic way.

6.1.2 MPC Friendly Hash Function: Rescue

Our generic construction of hybrid PKE schemes with efficient distributed
decryption will make use of MPC-friendly hash functions, such as those
in [98, 99]. These hash function constructions are primarily sponge-based
(see [46, Section 8.8] for a detailed description of the sponge construction).
In this chapter, we will consider one such construction called “Rescue” as
introduced in [98].

At a very high level, Rescue maintains a state of t = r + c finite field
elements in Fq, for a prime q. The initial state of the “sponge” is defined to
be the vector of t zero elements. A message is first mapped into n = d · r

2 This means that inputs of the parties remain private throughout the execution of the protocol,
and when a set of adversaries deviate from the protocol, honest parties will catch this with
overwhelming probability and then abort the protocol. This should be compared to passively
secure protocols which offer a much weaker guarantee that security is only preserved if all
parties follow the precise protocol steps correctly.
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elements in Fq, i.e., m0, m1, . . . , mn−1. The elements are absorbed into the
sponge in d absorption phases, where r elements are absorbed in each phase.
At each phase, a permutation f : Ft

q → Ft
q is applied resulting in a state

s0, . . . , st−1. At the end of absorption, the r values sc, . . . , st−1 are output
from the state. This process can then be repeated, with more data absorbed
and then squeezed out. Thus overall, we are defining a map H : Fn

q → Fr
q.

A nice feature about Rescue is that the primitive calls f involved with
absorbing and squeezing the sponge can be efficiently implemented in
a secure distributed setting. See for example [100] for a discussion on
implementing Rescue in an MPC system.

6.2 technical overview

As mentioned in Section 2.3 above, a standard method to construct efficient
PKE schemes for large messages is the KEM-DEM paradigm [15]. In such a
paradigm, the actual message is encrypted via the relatively efficient DEM
component, and the one-time symmetric DEM key is transferred to the
recipient via the KEM component. Let KEM = (KGenkem,Encap,Decap) be
an IND-CCA secure KEM and DEM = (KGendem,Encdem,Decdem) be a one-
time IND-CCA secure DEM. Then the IND-CCA secure hybrid PKE scheme
PKEhy = (KGenhy,Enchy,Dechy) obtained by composing the two schemes
using the KEM-DEM paradigm is described in Figure 2.4. In particular, the
encryption algorithm outputting (c0, c1) for Enchy is along the lines of:

(c0, k)← Encap(pk), c1 ← Encdem(k, m).

However, there is a problem with this hybrid construction when one
looks for a distributed variant of the decryption algorithm Dechy. Even if the
decapsulation algorithm of KEM has an efficient distributed operation, one
cannot derive an efficient distributed Dechy this way since the decryption
of DEM also needs to be executed in a distributed manner. And executing
Decdem in a distributed manner for standard symmetric encryption schemes
is possible, but very inefficient for long messages.

One obvious way to get around this problem is for the distributed decryp-
tion operation for PKEhy to output k in the clear after the KEM distributed
decapsulation has been executed – thereby enabling the decryption using
DEM to be done in the clear. We call such a hybrid PKE scheme “leaky”, as
the decryption algorithm leaks the underlying symmetric DEM key even if
the DEM ciphertext does not decrypt correctly. Now this approach might
seem intuitively attractive; however, it breaks the IND-CCA security of



148 functionality enhancements : efficient threshold decryption

Dec
hy
leak(sk, (c0, c1))

k← Decap(sk, c0)

if k =⊥ then return (⊥,⊥)

m := Decdem(k, c1)

return (k, m)

Figure 6.1: Leaky decryption functionality with respect to PKEhy.

PKEhy via a trivial attack. Namely, since the decrypting parties now obtain
the DEM key before it is known whether the key is valid for DEM, the new
“leaky” decryption functionality w.r.t. PKEhy (which we will call Dechy

leak),
and the functionality of any decryption oracle given to an adversary in the
IND-CCA sense, will be of the form described in Figure 6.1. This provides
an immediate IND-CCA attack on the hybrid construction. An adversary
can just take the target ciphertext (c∗0 , c∗1) and submit (c∗0 , c1) to the decryp-
tion oracle for a random value c1. With high probability, it will receive
(k,⊥). Then it can use k to decrypt c∗1 , and win the security game. It is to
avoid this attack that we modify the KEM-DEM framework.

Before discussing our new framework in more detail, it helps to first
consider the Tag-KEM framework of [22]. At a high level, the Tag-KEM
framework gives the following hybrid construction:

(c0, k)← Encap(pk), (k, µ)← H(k), c1 ← Encdem(k, m), c2 ← G(c1, µ)

where G and H are hash functions.3 This hybrid construction is secure if
KEM is IND-CCA secure and DEM is one-time IND-CPA secure. And one
of the applications of the Tag-KEM framework mentioned in [22] is that of
threshold hybrid public-key encryption. Their argument is as follows. Since
DEM in the above construction only needs to be one-time IND-CPA secure,
we can instantiate it with the one-time pad. In such a case, outputting
m already leaks k. Therefore, revealing the value k before applying the
decryption of c1 cannot break security, as that would contradict the main
security theorem in [22]. Thus one can apply threshold decryption to obtain
the decapsulation of c0, securely evaluate the value µ and perform the

3 In the original description of Tag-KEM framework in [22], H is replaced by a key-derivation
function and G is replaced by a MAC (with µ being the MAC key). But it is not hard to see that
by modelling G and H as random oracles, we get the desired properties of these primitives.
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“MAC check: c2 = G(c1, µ)” in a distributed fashion; if the check verifies,
the DEM key k can be leaked and c1 can be decrypted in the clear.

However, if DEM is the one-time pad encryption scheme, then this implies
that hash function H needs to be securely evaluated to produce a key k as
long as the message m. This results in an expensive distributed decryption
algorithm, which defeats the whole purpose of leaking k for efficiency in
the first place. To be more specific, we want both efficient hybrid distributed
decryption and an efficient DEM operation. If we take an AES-based DEM,
then the output of hash function H will be a bit vector in {0, 1}|k|. But the
hash input k will be “native” to the underlying KEM, and thus in general,
an element of a set such as Fn

p for some modulus p – which is the case for
most post-quantum KEMs. This means H needs to map from one arithmetic
domain to another securely in a distributed manner, which can be quite
expensive in practice. In addition to this efficiency issue, it is also not clear
how to formally prove security of the above Tag-KEM construction in the
post-quantum QROM setting.

This brings us to our hybrid construction which overcomes the above
issues. Our solution is inspired by FO-style transformations in that we
start with a weakly secure, i.e., OW-CPA secure, base PKE scheme PKE =
(KGen,Enc,Dec). On a high level, our construction – which we simply call
“Hybrid” – outputs a ciphertext of the form (c0, c1, c2, c3) with

k←M, k← H(k), µ← H′(k),

c0 ← Enc(pk, k), c1 ← Encdem(k, m), c2 ← G(c1, µ), c3 ← H′′(k),

where the hash functions G, H, H′ and H′′ are modelled as (quantum)
random oracles, and M is the message space of PKE. The distributed
decryption algorithm checks the c2 and c3 components in a distributed
manner, similar to the above Tag-KEM framework, and then leaks the key k
in the clear – enabling k to be produced and hence m to be decrypted from
the c1 component. We formally prove that this scheme is IND-CCA secure
in the QROM – even with this form of leaky decryption – if the base scheme
PKE, in addition to being OW-CPA secure, is rigid and perfectly correct, and
the scheme DEM is one-time IND-CPA secure; in Subsection 6.3.1, we also
discuss how our security proof can be extended to the case when PKE is
not perfectly correct.

In contrast to the Tag-KEM framework, DEM can be instantiated with
any one-time IND-CPA secure scheme – i.e., DEM need not be the one-time
pad – in our Hybrid transform to achieve an efficient distributed decryption
algorithm. One of the reasons for this efficiency is that, unlike the Tag-
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KEM construction, we leak the key k and not k, thereby precluding the
hash function H from mapping between different arithmetic domains in a
secure distributed manner. This same problem does not occur with G, H′

and H′′ as we are free to select these hash functions so that they can be
efficiently evaluated in a secure distributed setting; in other words, we
can have G, H′ and H′′ to be MPC-friendly hash functions such as Rescue.
On the downside however, we have an additional ciphertext component
“c3 = H′′(k)” where H′′ is a length-preserving hash – i.e., H′′ has domain
and co-domain equal to M. We rely on this extra component to obtain
a security proof in the QROM using the techniques in [50].4 In light of
more powerful proof techniques introduced in recent QROM literature (e.g.,
in [57]), it is an interesting open problem to come up with an alternative
transform to Hybrid which has smaller ciphertexts, while at the same time,
admits a security proof in the QROM.

6.3 the Hybrid construction

In this section, we formally describe our generic “Hybrid” construction,
and prove the IND-CCA security of resulting hybrid PKE schemes – with
respect to the leaky decryption functionality discussed in Section 6.2 above
– in the QROM.

Let PKE = (KGen,Enc,Dec) be a deterministic and rigid PKE scheme
with message space M. Also let DEM = (KGendem,Encdem,Decdem) be
a randomized DEM scheme with key space K and ciphertext space C;
we additionally assume that KGendem generates a symmetric key k ←$ K
uniformly at random. For our hybrid construction, we define the following
four hash functions:

H :M−→ K,

H′, H′′ :M−→M,

G : C ×M −→ F .

Here the co-domain F of function G is to be interpreted as a finite field
Ft

q, for some prime q, which is typically the case for MPC-friendly hash

4 The authors of [50] modified the original FO transformation in [1] by adding a similar
ciphertext component so as to obtain a security proof in the QROM. It was later discovered
that the proof had gaps in it [37]. On a high level, the gaps were related to the fact that base
PKE schemes used in the FO transform can be randomized. A similar issue does not arise
in our QROM security proof for the Hybrid transform because we assume deterministic base
PKE scheme.
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functions such as Rescue (see Subsection 6.1.2); because after all, one needs
to instantiate G, H′ and H′′ with such functions in order to achieve an
efficient hybrid threshold decryption operation using our Hybrid transform.

Now our hybrid PKE construction5 PKEhy = (KGenhy,Enchy,Dechy) ob-
tained via the Hybrid transform is described in Figure 6.2. Notice how the
decryption function leaks the key k even when the decryption function
Decdem might fail. This will allow us, in our threshold decryption operation,
to also leak this key before the algorithm Decdem is called – thereby enabling
Decdem to be applied in the clear; a more detailed description of the thresh-
old operation is presented in Subsection 6.3.2 below. The only question now
is whether leaking this key is secure. The attack described in the previous
section w.r.t. “thresholdizing” the standard KEM-DEM framework does not
apply to our construction, as an invalid ciphertext will get rejected (with
high probability) by the “c3 = H′′(k)” and “c2 = G(c1, H′(k))” checks; in
such a case, the key k will not be leaked to the adversary.

In fact, the following theorem shows that – in the QROM – our hybrid
construction PKEhy is IND-CCA secure in a model where the key k leaks
during decryption as above, when the underlying PKE is OW-CPA secure
and perfectly correct (in Subsection 6.3.1, we discuss how to handle PKE
with correctness errors), and DEM is any one-time IND-CPA secure scheme.

Theorem 19. Let PKEhy = (KGenhy,Enchy,Dechy) be the hybrid PKE con-
struction obtained by composing a deterministic PKE = (KGen,Enc,Dec) and a
(randomized) DEM = (KGendem,Encdem,Decdem) via the Hybrid transform (see
Fig. 6.2). Suppose PKE is perfectly correct and rigid (with message space M).
Then for any IND-CCA adversary Ahy against PKEhy issuing at-most qG, qH ,
qH′ and qH′′ queries to the quantum random oracles G, H, H′ and H′′ respectively,
and at-most qD queries to the (classical) decryption oracle, there exist a one-time
IND-CPA adversary Adem against DEM, and OW-CPA adversaries Apke and
A′pke against PKE such that

AdvIND-CCA
PKEhy (Ahy) ≤ AdvotIND-CPA

DEM (Adem)

+ 2(qH + qH′)

√
2qG√
|M|

+
qD
|F | + AdvOW-CPA

PKE (Apke) + 2qH′′
√

AdvOW-CPA
PKE (A′pke).

5 Note that we use the term “construction” – and not “scheme” – when referring to PKEhy

since, technically speaking, it is not a PKE scheme in the sense of Definition 1; this is because
the decryption algorithm Dechy outputs/leaks the value k in addition to message m. In other
words, PKEhy should not be seen as a PKE scheme “in isolation”, but instead should be
viewed in context of the threshold application we are considering in this chapter.
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KGenhy

(pk, sk)← KGen

return (pk, sk)

Enchy(pk, m)

k←M
k← H(k)

µ← H′(k)

c0 := Enc(pk, k)

c1 ← Encdem(k, m)

c2 ← G(c1, µ)

c3 ← H′′(k)

c := (c0, c1, c2, c3)

return c

Dechy(sk, c)

Parse c = (c0, c1, c2, c3)

k := Dec(sk, c0)

if k =⊥ then return (⊥,⊥)
t← H′′(k)

if t ̸= c3 then return (⊥,⊥)
µ← H′(k)

t′ ← G(c1, µ)

if t′ ̸= c2 then return (⊥,⊥)
k← H(k)

m := Decdem(k, c1)

return (k, m)

Figure 6.2: Hybrid construction.

Here the running times of Adem, Apke and A′pke are about the same as that of
Ahy. More importantly, note that the responses to decryption oracle queries made
by Ahy leak the key k as noted above in Fig. 6.2.

Proof. Denote ΩG, ΩH and ΩH′ to be the set of all functions G : C ×M →
F , H : M→ K and H′ : M→M respectively, whereM is the message
space of PKE, and K and C are the key space and ciphertext space of DEM
respectively.

Let Ahy be an adversary against the IND-CCA security of PKEhy issuing
at most qG, qH , qH′ and qH′′ quantum queries to the random oracles G,
H, H′ and H′′ respectively and at most qD classical decryption queries.
Consider the sequence of games G0 − G12 described in Figures 6.3, 6.5
and 6.7.

Game G0: The game G0 is exactly the IND-CCA security game associated
with PKEhy. Hence, we have∣∣∣Pr[G0 = 1]− 1

2

∣∣∣ = AdvIND-CCA
PKEhy (Ahy).

Game G1: In game G1, we introduce some cosmetic changes to the setup.
Namely, we generate the values k

∗
, k∗, µ∗ and c∗0 before Ahy outputs the

pair of challenge messages (m0, m1). This does not affect Ahy’s view in
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Games G0 - G3

1 : (pk, sk)← KGen

2 : G ←$ ΩG; H ←$ ΩH

3 : H′ ←$ ΩH′ ; H′′ ←$ ΩH′

4 : k
∗ ←$M // G1–G3

5 : k∗ ← H(k
∗
); µ∗ ← H′(k

∗
) // G1–G2

6 : k∗ ←$ K; µ∗ ←$M // G3

7 : c∗0 := Enc(pk, k
∗
) // G1–G3

8 : (m0, m1, st)← AG,H,H′ ,H′′ ,Dec
hy
⊥

hy (pk)

9 : b←$ {0, 1}
10 : k

∗ ←$M // G0

11 : k∗ ← H(k
∗
); µ∗ ← H′(k

∗
) // G0

12 : c∗0 := Enc(pk, k
∗
) // G0

13 : c∗1 ← Encdem(k∗, mb)

14 : c∗2 ← G(c∗1 , µ∗)

15 : c∗3 ← H′′(k
∗
)

16 : c∗ := (c∗0 , c∗1 , c∗2 , c∗3)

17 : b′ ← AG,H,H′ ,H′′ ,Dec
hy
c∗

hy (c∗, st)

18 : return [b′ = b]

Dec
hy
a (c)

1 : if c = a then return ⊥
2 : Parse c = (c0, c1, c2, c3)

3 : k := Dec(sk, c0)

4 : if k =⊥ then

5 : k
′ ←$M; query H′′(k

′
) // G2–G3

6 : return (⊥,⊥)
7 : t← H′′(k)

8 : if t ̸= c3 then return (⊥,⊥)
9 : if c0 = c∗0 then // G2–G3

10 : µ← µ∗; t′ ← G(c1, µ∗) // G2–G3

11 : else µ← H′(k); t′ ← G(c1, µ)

12 : if t′ ̸= c2 then return (⊥,⊥)
13 : k← H(k); m := Decdem(k, c1)

14 : return (k, m)

Figure 6.3: Games G0 – G12 for the proof of Theorem 19.
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any way when it queries the oracles G, H, H′, H′′ and Dec
hy
⊥ in the “pre-

challenge phase” (i.e., before Ahy outputs (m0, m1)). Hence,

Pr[G1 = 1] = Pr[G0 = 1].

Game G2: In game G2, we modify the decryption oracle Dec
hy
a (with

a ∈ {⊥, c∗}) as follows: if c0 = c∗0 , then we replace the hash evaluation
“µ ← H′(k)” with “µ ← µ∗”. (We also make another cosmetic change to
Dec

hy
a where, if k =⊥, we make a classical H′′-query on a uniformly random

k
′ ←$M. This change will become apparent later on when we make further

modifications to Dec
hy
a that allows us to decrypt any ciphertext without

using sk.) Note that the games G1 and G2 are equivalent unless there is a
decryption failure w.r.t. the ciphertext c∗0 . But since we assumed that PKE is
perfectly correct, we have

Pr[G2 = 1] = Pr[G1 = 1].

Game G3: In the setup of game G3, we replace the hash evaluations “k∗ ←
H(k

∗
)” and µ∗ ← H′(k

∗
)” with “k∗ ←$ K” and “µ∗ ←$ M” respectively.

That is, k∗ and µ∗ are now uniformly random values that are generated
independently of the QROs H and H′ respectively. We first bound the
success probability of Ahy in G3 via a reduction to the one-time IND-CPA
security (i.e., otIND-CPA security; see Definition 11) of DEM. Let Adem be a
one-time IND-CPA adversary against DEM that works as follows:

• Runs KGenhy to obtain (pk, sk).

• Generates k
∗ ←$M, µ∗ ←$M and computes c∗0 := Enc(pk, k

∗
).

• Uses a 2qG-wise independent function, 2qH-wise independent func-
tion, 2qH′ -wise independent function and 2qH′′ -wise independent
function to simulate the QROs G, H, H′ and H′′ respectively, as noted
in Lemma 1.

• Runs AG,H,H′ ,H′′ ,Dec
hy
⊥

hy (pk) by answering the quantum random oracle
queries and classical decryption queries as in G3, and finally obtains
(m0, m1).

• Forwards (m0, m1) to its one-time IND-CPA challenger and gets the
ciphertext c∗1 in return. Note that the uniform secret key k∗ is generated
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implicitly by the challenger (i.e., k∗ ←$ K6) as well as the bit b (←$

{0, 1}). Thus, we have c∗1 ← Encdem(k∗, mb).

• Computes c∗2 ← G(c∗1 , µ∗) and c∗3 ← H′′(k
∗
).

• Runs AG,H,H′ ,H′′ ,Dec
hy
c∗

hy (c∗), where c∗ = (c∗0 , c∗1 , c∗2 , c∗3) by answering the
random oracle queries and decryption queries as in G3, and finally
obtains a bit b′.

• Forwards bit b′ to its one-time IND-CPA challenger as the final output.

AH×H′(k
∗
, (k∗, µ∗))

1 : (pk, sk)← KGen

2 : G ←$ ΩG; H′′ ←$ ΩH′

3 : c∗0 := Enc(pk, k
∗
)

4 : (m0, m1, st)← AG,H,H′ ,H′′ ,Dec
hy
⊥

hy (pk)

5 : b←$ {0, 1}

6 : c∗1 ← Encdem(k∗, mb)

7 : c∗2 ← G(c∗1 , µ∗)

8 : c∗3 ← H′′(k
∗
)

9 : c∗ := (c∗0 , c∗1 , c∗2 , c∗3)

10 : b′ ← AG,H,H′ ,H′′ ,Dec
hy
c∗

hy (c∗, st)

11 : return [b′ = b]

Dec
hy
a (c)

1 : if c = a then return ⊥
2 : Parse c = (c0, c1, c2, c3)

3 : k := Dec(sk, c0)

4 : if k =⊥ then

5 : k
′ ←$M; query H′′(k

′
)

6 : return (⊥,⊥)
7 : t← H′′(k)

8 : if t ̸= c3 then return (⊥,⊥)
9 : if c0 = c∗0 then

10 : µ← µ∗; t′ ← G(c1, µ∗)

11 : else µ← H′(k); t′ ← G(c1, µ)

12 : if t′ ̸= c2 then return (⊥,⊥)

13 : k← H(k); m := Decdem(k, c1)

14 : return (k, m)

Figure 6.4: Algorithm AH×H′ for the proof of Theorem 19.

It is easy to see that∣∣∣Pr[G3 = 1]− 1
2

∣∣∣ = AdvotIND-CPA
DEM (Adem).

6 Since we assumed that KGendem generates keys uniformly at random from the key space K
(see Fig. 6.2).
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Game G4: Now using the OW2H lemma (Lemma 3), we bound the
difference between the success probabilities of Ahy in G2 and G3.7 Let
A be an oracle algorithm that has quantum access to the random oracle
H × H′, where (H × H′)(k) = (H(k), H′(k)). Figure 6.4 describes AH×H′ ’s
operation on input (k

∗
, (k∗, µ∗)). Note that the algorithm AH×H′ makes at

most qH + qH′ number of queries to the random oracle H × H′ to respond
to Ahy’s oracle queries8.

With this construction of A, note that P1
A = Pr[G2 = 1] and P2

A = Pr[G3 =

1], where P1
A and P2

A are as defined in Lemma 3 w.r.t. the algorithm AH×H′ .
To analyze the corresponding probability PB in Lemma 3, we hence define
game G4 (see Fig. 6.5) such that PB = Pr[G4 = 1]. From Lemma 3, we thus
have

|Pr[G2 = 1]− Pr[G3 = 1]| ≤ 2(qH + qH′)
√

Pr[G4 = 1].

Game G5: In game G5, we replace the evaluations of oracle G(. , µ∗) with
that of a truly random quantum oracle R(.). Specifically, let ΩR be the set
of all functions R : C → F . Then R(←$ ΩR) is an internal oracle that is not
directly accessible by Ahy. We can justify this replacement using Lemma 2

w.r.t. the pseudorandomness of G(. , µ∗), with PRF key µ∗ ←$M, to obtain
the following via a straightforward reduction:

|Pr[G4 = 1]− Pr[G5 = 1]| ≤ 2qG√
|M|

.

Game G6: In game G6, we modify the decryption oracle as follows: if
c0 = c∗0 , return (⊥,⊥). (We also make a cosmetic change where we replace
“c∗2 ← R(c∗1)” with “c∗2 ←$ F”, since the random function R would have
only been used on c∗1 throughout G6 and no other c1-values.) Note that
the only way the execution of games G5 and G6 would differ is if Ahy
made decryption queries of the form c = (c∗0 , c1, c2, c∗3) where c1 ̸= c∗1
and R(c1) = c2; also in such an event, the number of H-queries with
argument k

∗
in G5 and G6 will go “out of sync” resulting in a difference in

Ahy’s respective success probabilities. Since R is an internal random oracle
not directly accessible by Ahy, we can bound the probability of the event

7 Here we note that one could use more recent variants of the OW2H lemma – e.g., as proposed
in [37, 51, 52] – to obtain a tighter security proof for PKEhy in the QROM (also see Footnote 12

of this chapter).
8 If AH×H′ wants to respond to A’s H-query, then AH×H′ prepares a uniform superposition

of all states in the output register corresponding to H′ (see Footnote 3 of Chapter 3, and
also [50]).
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Games G4 - G7, G9, G11

1 : (pk, sk)← KGen

2 : G ←$ ΩG; H ←$ ΩH; H′ ←$ ΩH′

3 : H′′ ←$ ΩH′ // G4 – G7

4 : H′′ ←$ Ωpoly // G9, G11

5 : R←$ ΩR // G5

6 : k
∗ ←$M; k∗ ←$ K; µ∗ ←$M

7 : c∗0 := Enc(pk, k
∗
)

8 : i←$ {1, . . . , qH + qH′}
9 : run until i-th query to oracle H × H′

10 : (m0, m1, st)← AG,H,H′ ,H′′ ,Dec
hy
⊥

hy (pk)

11 : b←$ {0, 1}

12 : c∗1 ← Encdem(k∗, mb)

13 : c∗2 ← G(c∗1 , µ∗) // G4

14 : c∗2 ← R(c∗1) // G5

15 : c∗2 ←$ F // G6–G7, G9, G11

16 : c∗3 ← H′′(k
∗
) // G4–G6

17 : c∗3 ←$M // G7, G9, G11

18 : c∗ := (c∗0 , c∗1 , c∗2 , c∗3)

19 : b′ ← AG,H,H′ ,H′′ ,Dec
hy
c∗

hy (c∗, st)

20 : measure the argument k
′

of the

i-th query to oracle H × H′

21 : return [k
′
= k
∗
]

Dec
hy
a (c0, c1, c2, c3) // G4 - G7, G9

1 : if c0 = c∗0 then

2 : return (⊥,⊥) // G6–G7, G9

3 : k := Dec(sk, c0)

4 : if k =⊥ then

5 : k
′ ←$M; query H′′(k

′
)

6 : return (⊥,⊥)
7 : t← H′′(k)

8 : if t ̸= c3 then return (⊥,⊥)
9 : if c0 = c∗0 then // G4–G5

10 : µ← µ∗; t′ ← G(c1, µ∗) // G4

11 : t′ ← R(c1) // G5

12 : else µ← H′(k); t′ ← G(c1, µ)

13 : if t′ ̸= c2 then return (⊥,⊥)
14 : k← H(k); m := Decdem(k, c1)

15 : return (k, m)

Dec
hy
a (c0, c1, c2, c3) // G11

1 : if c0 = c∗0 then

2 : return (⊥,⊥)
3 : Compute set of roots S

4 : of polynomial H′′(x)− c3

5 : if ∃k ∈ S s.t. Enc(pk, k) = c0

6 : then

7 : query H′′(k)

8 : µ← H′(k); t′ ← G(c1, µ)

9 : if t′ ̸= c2 then

10 : return (⊥,⊥)

11 : else k← H(k); m := Decdem(k, c1)

12 : return (k, m)

13 : else k
′ ←$M; query H′′(k

′
)

14 : return (⊥,⊥)

Figure 6.5: Games G4 – G7, G9, G11 for the proof of Theorem 19. AlsoAhy does not

make (classical) queries to oracle Dec
hy
a of the form (c0, c1, c2, c3) = a.
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“R(c1) = c2” w.r.t. a single decryption query c = (c∗0 , c1, c2, c∗3) by 1/|F |.
Using a union bound, we conclude that

|Pr[G5 = 1]− Pr[G6 = 1]| ≤ qD
|F | .

ÂH′′(k
∗
, c∗3)

1 : (pk, sk)← KGen

2 : G ←$ ΩG; H ←$ ΩH; H′ ←$ ΩH′

3 : k∗ ←$M

4 : c∗0 := Enc(pk, k
∗
)

5 : i←$ {1, . . . , qH + qH′}
6 : run until i-th query to oracle H × H′

7 : (m0, m1, st)← AG,H,H′ ,H′′ ,Dec
hy
⊥

hy (pk)

8 : b←$ {0, 1}

9 : c∗1 ← Encdem(k∗, mb)

10 : c∗2 ←$ F
11 : c∗ := (c∗0 , c∗1 , c∗2 , c∗3)

12 : b′ ← AG,H,H′ ,H′′ ,Dec
hy
c∗

hy (c∗, st)

13 : measure the argument k
′

of the

i-th query to oracle H × H′

14 : return [k
′
= k
∗
]

Dec
hy
a (c)

1 : if c = a then return ⊥
2 : Parse c = (c0, c1, c2, c3)

3 : if c0 = c∗0 then return (⊥,⊥)
4 : k := Dec(sk, c0)

5 : if k =⊥ then

6 : k
′ ←$M; query H′′(k

′
)

7 : return (⊥,⊥)
8 : t← H′′(k)

9 : if t ̸= c3 then return (⊥,⊥)
10 : µ← H′(k); t′ ← G(c1, µ)

11 : if t′ ̸= c2 then return (⊥,⊥)

12 : k← H(k); m := Decdem(k, c1)

13 : return (k, m)

Figure 6.6: Algorithm ÂH′′ for the proof of Theorem 19.

Games G7 and G8: In the setup of game G7, we replace the computation
“c∗3 ← H′′(k

∗
)” with “c∗3 ←$ M”. That is, c∗3 is now a uniformly random

value that is generated independently of k
∗

and the QRO H′′. Using Lemma
3, we bound the difference between the success probabilities of Ahy in G6

and G7. Let Â be an algorithm that has quantum access to the random
oracle H′′. Figure 6.6 describes ÂH′′ ’s operation on input (k

∗
, c∗3). Note that

the algorithm ÂH′′ makes at most qH′′ queries to the random oracle H′′ to
respond to Ahy’s oracle queries.
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Games G8 and G10

1 : (pk, sk)← KGen

2 : G ←$ ΩG; H ←$ ΩH; H′ ←$ ΩH′

3 : H′′ ←$ ΩH′ // G8

4 : H′′ ←$ Ωpoly // G10, G12

5 : k
∗ ←$M; k∗ ←$ K; µ∗ ←$M

6 : c∗0 := Enc(pk, k
∗
)

7 : j←$ {1, . . . , qH′′}
8 : run until j-th query to oracle H′′

9 : i←$ {1, . . . , qH + qH′}
10 : run until i-th query to oracle H × H′

11 : (m0, m1, st)← AG,H,H′ ,H′′ ,Dec
hy
⊥

hy (pk)

12 : b←$ {0, 1}

13 : c∗1 ← Encdem(k∗, mb)

14 : c∗2 ←$ F
15 : c∗3 ←$M
16 : c∗ := (c∗0 , c∗1 , c∗2 , c∗3)

17 : b′ ← AG,H,H′ ,H′′ ,Dec
hy
c∗

hy (c∗, st)

18 : measure the argument k
′

of the

i-th query to oracle H × H′

19 : measure the argument k
′′

of the

j-th query to oracle H′′

20 : return [k
′′
= k∗]

Dec
hy
a (c0, c1, c2, c3) // G8, G10

1 : if c0 = c∗0 then

2 : return (⊥,⊥)
3 : k := Dec(sk, c0)

4 : if k =⊥ then

5 : k
′ ←$M; query H′′(k

′
)

6 : return (⊥,⊥)
7 : t← H′′(k)

8 : if t ̸= c3 then return (⊥,⊥)
9 : else µ← H′(k); t′ ← G(c1, µ)

10 : if t′ ̸= c2 then return (⊥,⊥)

11 : k← H(k); m := Decdem(k, c1)

12 : return (k, m)

Dec
hy
a (c0, c1, c2, c3) // G12

1 : if c0 = c∗0 then

2 : return (⊥,⊥)
3 : Compute set of roots S

4 : of polynomial H′′(x)− c3

5 : if ∃k ∈ S s.t. Enc(pk, k) = c0

6 : then

7 : query H′′(k)

8 : µ← H′(k); t′ ← G(c1, µ)

9 : if t′ ̸= c2 then

10 : return (⊥,⊥)
11 : else k← H(k)

12 : m := Decdem(k, c1)

13 : return (k, m)

14 : else k
′ ←$M; query H′′(k

′
)

15 : return (⊥,⊥)

Figure 6.7: Games G8, G10 and G12 for the proof of Theorem 19. AlsoAhy does not

make (classical) queries to oracle Dec
hy
a of the form (c0, c1, c2, c3) = a.
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With the above construction of Â, we have P1
Â
= Pr[G6 = 1] and P2

Â
=

Pr[G7 = 1], where P1
Â

and P2
Â

are as defined in Lemma 3 w.r.t. the algorithm

ÂH′′ . Therefore, we now define game G8 (see Figure 6.7) to analyze the
corresponding probability PB̂ in Lemma 3; note here that PB̂ = Pr[G8 = 1].
From Lemma 3, we thus have

|Pr[G6 = 1]− Pr[G7 = 1]| ≤ 2qH′′

√
Pr[G8 = 1].

Games G9 and G10: In games G9 and G10, we replace the random oracle
H′′ with a 2qH′′ -wise independent function, following Lemma 1. Random
polynomials of degree 2qH′′ − 1 over the finite field representation ofM are
2qH′′ -wise independent. Let Ωpoly be the set of all such polynomials. Then
specifically, we are replacing the step “H′′ ←$ ΩH′” with “H′′ ←$ Ωpoly” in
both games. From Lemma 1, as this change is indistinguishable when the
oracle H′′ is queried at most qH′′ times, we have G7 and G9 (respectively, G8
and G10) to be equivalent. Therefore,

Pr[G7 = 1] = Pr[G9 = 1], Pr[G8 = 1] = Pr[G10 = 1].

Games G11 and G12: In G11 and G12, we modify the decryption oracle –
the same way in both games (Fig. 6.5 describes G11 and Fig. 6.7 describes
G12, respectively) – such that the secret key sk is not used to decrypt a
ciphertext c = (c0, c1, c2, c3). To analyze this change to Dec

hy
a , we define

two “bad” events in games G9 – G12:

• Let bad1 denote the event that Ahy asks for the decryption of c =
(c0, c1, c2, c3) such that c0 is a ciphertext for which there are two distinct
messages k, k

′
that encrypt to it – i.e., Enc(pk, k) = Enc(pk, k

′
) = c0.

• Let bad2 denote the event that Ahy asks for the decryption of c =

(c0, c1, c2, c3) such that Dec(sk, c0) =⊥ and there exists a root k
′

of the
polynomial H′′(x)− c3 (recall that H′′ in now a random polynomial of
degree 2qH′′ − 1) which satisfies Enc(pk, k

′
) = c0.

Setting bad = bad1 ∨ bad2, we have the following w.r.t. games G9 and G10:

Pr[G9 = 1] ≤ Pr[bad] + Pr[¬bad]Pr[G9 = 1 | ¬bad]
Pr[G10 = 1] ≤ Pr[bad] + Pr[¬bad]Pr[G10 = 1 | ¬bad]

Now in order to show that Pr[G9 = 1|¬bad] ≤ Pr[G11 = 1|¬bad] and
Pr[G10 = 1|¬bad] ≤ Pr[G12 = 1|¬bad], it is sufficient to show, assuming the
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event ¬bad occurs: (1) the new decryption oracle returns the same output
as the previous oracle when queried on any ciphertext, (2) the queries
submitted to the random oracles H, H′ and H′′ remain “in sync” after this
modification to Dec

hy
a (e.g., the j-th query to H′′ at a particular stage in G10

corresponds to the j-th query to H′′ in the same stage of G12), and (3) upon
measuring the argument of the i-th query to oracle (H × H′) in G9 and G11
(resp., the j-th query to oracle H′′ in G10 and G12), the probability of the
outcome being k

∗
in G11 (resp., G12) is greater than or equal to that in G9

(resp., G10).
Suppose Ahy asks for the decryption of c = (c0, c1, c2, c3). Let k =

Dec(sk, c0). Consider the following cases while assuming the event ¬bad
occurs:

1. c0 = c∗0 : The Dec
hy
a oracle in G9, G10, G11 and G12 returns (⊥,⊥). At

the same time, no queries are made to H, H′ and H′′ at this stage (in
particular, no query on k

∗
).

2. c0 ̸= c∗0 and k =⊥: The oracle Dec
hy
a in G9 and G10 returns (⊥,⊥).

Since the event ¬bad (and hence, ¬bad2) happens, the oracle Dec
hy
a

in G11 and G12 returns (⊥,⊥) as well, as there does not exist a root
k
′ ∈ S such that Enc(pk, k

′
) = c0.

No queries are made to H and H′ in this case. On the other hand,
a single classical query is made to H′′ on a uniformly random value
in M in games G9 – G12. Hence in particular, the probability of the
query being k

∗
is equal in G10 and G12.

3. c0 ̸= c∗0 , k ̸=⊥ and H′′(k) ̸= c3: Dec
hy
a in G9 and G10 returns (⊥,⊥).

Since the event ¬bad (and hence, ¬bad1) happens, Dec
hy
a in G11 and

G12 returns (⊥,⊥) as well, as there does not exist a root k
′ ∈ S

such that Enc(pk, k
′
) = c0; otherwise, from the rigidity of PKE (see

Definition 4), we have Enc(pk, k) = c0 = Enc(pk, k
′
) with k ̸= k

′
(since

H′′(k) ̸= c3 = H′′(k
′
)), contradicting the event ¬bad1 happening.

No queries are made to H and H′ in this case. In games G9, G10, a
classical query is made to H′′ on k, to do the check “(H′′(k) = c3)”.
As PKE is rigid, we have Enc(pk, k) = c0 ̸= c∗0 . Since PKE is also
deterministic, it must be the case that k ̸= k

∗
. In G11 and G12, as there

does not exist a root k
′ ∈ S such that Enc(pk, k

′
) = c0, we make a

classical H′′-query on a uniformly random value fromM. This step
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essentially keeps the H′′-oracle calls “in sync” across both decryption
oracles. Now it is not hard to see that if the j-th query to oracle H′′ –
where j←$ {1, . . . , qH′′} was sampled at the beginning of G10 and G12
– is at this stage, namely when Ahy made this particular decryption
query, then the probability of the measurement outcome w.r.t. this
classical H′′-query being k

∗
is 0 in G10 and 1/|M| in G12.

4. c0 ̸= c∗0 , k ̸=⊥, H′′(k) = c3 and G(c1, H′(k)) ̸= c2: Dec
hy
a in G9 and G10

returns (⊥,⊥). Dec
hy
a in G11 and G12 also returns (⊥,⊥), as now we

have k ∈ S (since H′′(k)− c3 = 0) such that Enc(pk, k) = c0, which
follows from PKE’s rigidity. At the same time, as the event ¬bad (and
hence, ¬bad1) happens, there must not exist a different root k

′ ∈ S
such that Enc(pk, k

′
) = c0. Since the G-check fails w.r.t. k in this new

decryption oracle as well, i.e., G(c1, H′(k)) ̸= c2, (⊥,⊥) is returned.

No query is made to H in this case. But a classical query is made to
H′ and H′′ on the value k at this stage in G9 – G12. Thus, all oracles
call are “in sync" across both versions of Dec

hy
a , and the probability

of the measurement outcome w.r.t. this classical (H× H′)-query (resp.,
H′′-query) in G9 and G11 (resp., G10 and G12) being k

∗
is 0.

5. c0 ̸= c∗0 , k ̸=⊥, H′′(k) = c3 and G(c1, H′(k)) = c2: Dec
hy
a in G9 and G10

returns (k,Decdem(H(k), c1)). Dec
hy
a in G11 and G12 also returns the

pair (k,Decdem(H(k), c1)) following a similar analysis above, the only
difference being that now the (sole) root in S, namely k, also satisfies
the G-check: G(c1, H′(k)) = c2.

In this case, a classical query is made to H, H′ and H′′ on k in G9 –
G12. Again, all oracles call are “in sync" across both versions of Dec

hy
a ,

and the probability of the measurement outcome w.r.t. any of the two
classical (H × H′)-queries, corresponding to the H(k) and H′(k) calls
respectively, in G9 and G11 (resp., the single H′′-query, corresponding
to the H′′(k) call, in G10 and G12) being k∗ is 0.

Thus, we finally have that Pr[G9 = 1|¬bad] ≤ Pr[G11 = 1|¬bad] and
Pr[G10 = 1|¬bad] ≤ Pr[G12 = 1|¬bad]. At the same time, it is not hard to
see that the probability Pr[¬bad] (and hence, Pr[bad]) should be the same
in games G9 and G11 (resp., G10 and G12). This is because, the event ¬bad
depends on Ahy’s queries to the Dec

hy
a oracle. In the above analysis, since

we showed that – assuming the event ¬bad occurs – the Dec
hy
a oracles
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have the same input-output behavior in G9 – G12, Ahy’s view (and hence,
execution) in G9 and G11 (resp., G10 and G12) should be identical until the
first Dec

hy
a -query that violates ¬bad; this means the probability that a given

Dec
hy
a -query made by Ahy satisfies the event ¬bad remains the same in

G9 and G11 (resp., G10 and G12) while conditioning on the event that all
of Ahy’s previous Dec

hy
a -queries are consistent with ¬bad. So we have the

following:

Pr[G9 = 1] ≤ Pr[bad] + Pr[¬bad∧ G11 = 1] ≤ Pr[bad] + Pr[G11 = 1],

Pr[G10 = 1] ≤ Pr[bad] + Pr[¬bad∧ G12 = 1] ≤ Pr[bad] + Pr[G12 = 1].

Since we assumed that PKE is perfectly correct, we have Pr[bad] =
Pr[bad1] = Pr[bad2] = 0.9

Finally, since the Dec
hy
a oracle in games G11 and G12 does not use the

secret key sk to decrypt any ciphertext, we can bound the success probability
of Ahy in G11 and G12 via reductions to the OW-CPA security of PKE. Let
Apke (resp., A′pke) be an OW-CPA adversary against PKE that, given an
input (pk, c∗0), works as follows:

• Generates k∗ ←$ K and µ∗ ←$ M. Note that the uniform message
k
∗

is generated implicitly by the OW-CPA challenger (along with the
public key pk) such that Enc(pk, k

∗
) = c∗0 .

• Uses a 2qG-wise independent function, 2qH-wise independent func-
tion, 2qH′ -wise independent function and 2qH′′ -wise independent
polynomial to simulate the quantum random oracles G, H, H′ and
H′′ respectively, as noted in Lemma 1.

• Selects i←$ {1, . . . , qH + qH′} (resp., j←$ {1, . . . , qH′′}).

• Until the i-th (resp., j-th) query to the oracle H × H′ (resp., H′′) is
made, does the following:

• Runs AG,H,H′ ,H′′ ,Dec
hy
⊥

hy (pk) by answering the quantum random
oracle queries and classical decryption queries as in G11 (resp.,
G12), and finally obtains (m0, m1).

(Note that the OW-CPA adversaries Apke and A′pke can simulate

Dec
hy
a without possessing the secret key sk.)

9 The reason we went into the trouble of defining bad1 and bad2 events in the first place –
despite PKE being perfectly correct – will be made clear in Subsection 6.3.1 where we discuss
extending our security proof to the case where PKE exhibits decryption errors.
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• Samples a bit b←$ {0, 1} to compute c∗1 = Encdem(k∗, mb). Gen-
erates the rest of the ciphertext components as c∗2 ←$ F and
c∗3 ←$M.

• Runs AG,H,H′ ,H′′ ,Dec
hy
c∗

hy (c∗), where c∗ = (c∗1 , c∗2 , c∗3 , c∗4), by answer-
ing the quantum random oracle queries and classical decryption
queries as in G11 (resp., G12), and obtains a bit b′.

• Measures the argument k
′

of the i-th (resp., j-th) query to the oracle
H × H′ (resp., H′′) and outputs k

′
; if Ahy makes less than i (resp., j)

queries, output ⊥.

From the above construction of adversaries Apke and A′pke, it is easy to
see that

Pr[G11 = 1] ≤ AdvOW-CPA
PKE (Apke), Pr[G12 = 1] ≤ AdvOW-CPA

PKE (A′pke).

By combining all the above bounds w.r.t. the success probabilities of Ahy
in each of the games G0 – G12, we get

AdvIND-CCA
PKEhy (Ahy) ≤ AdvotIND-CPA

DEM (Adem)

+ 2(qH + qH′)

√
2qG√
|M|

+
qD
|F | + AdvOW-CPA

PKE (Apke) + 2qH′′
√

AdvOW-CPA
PKE (A′pke).

6.3.1 Extension to “Non Perfectly-Correct” PKE

In Theorem 19, we relied on the deterministic PKE scheme being perfectly
correct. And as mentioned earlier, in the context of NIST’s PQC standard-
ization process, there are KEM candidates which use a base determinis-
tic PKE scheme that is perfectly correct (and rigid): for example, Classic
McEliece [21] and NTRU [23]. However, other important lattice-based NIST
PQC candidates – such as Kyber [11], FrodoKEM [16] and Saber [62] – use
a base (randomized) PKE scheme that exhibits decryption errors.10

10 One way to de-randomize such PKE schemes is to apply the RO-based “T” transform of [4]
(also see Figure 4.9). In fact, it was shown in [4, 41] that the T transform also confers rigidity.
However, the transform includes a re-encryption check during decryption. And as argued
at the start of this chapter, performing such re-encryption in a threshold manner could be a
complicated process for lattice-based schemes.
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Fortunately, by carefully going over the sequence of game-hops in our
proof of Theorem 19, it is not hard to see how one can extend the analysis to
PKE that may not be perfectly correct. To be more specific, in our analysis of
games G11 and G12 above, we had the “bad” events bad1 and bad2 happening
with zero probability because of PKE’s perfect correctness.11 In the case of
PKE with decryption errors, one can bound the bad1 and bad2 probabilities
with appropriate correctness properties which are specific to the concrete
instantiation of PKE.

For example, in [27], we bounded the bad1 probability using so-called
“δ-collision freeness” of PKE; roughly speaking, a PKE scheme is said to
be δ-collision free if the probability of the scheme having collisions – i.e.,
two messages encrypting to the same ciphertext – is bounded by δ where
the probability is taken over generation of public/private key pairs.12

Similarly, we also bounded the probability of bad2 happening by the so-
called “⊥-Aware security” of PKE; at a high level, the property captures
the difficulty of an adversary, given the public key pk, to come up with a
plaintext/ciphertext pair (m, c) such that c = Enc(pk, m) but Dec(sk, c) = ⊥.
Then in the same paper [27], we gave an explicit construction of a deter-
ministic rigid PKE which has an efficient distributed decryption procedure
and whose one-wayness security is based on hardness of the learning-
with-rounding (LWR) problem [101] (similar to Saber). Later, we rigorously
analyzed the δ-collision freeness of our LWR-based PKE for concrete values
of δ. Similarly, we established concrete ⊥-Aware security of PKE by rely-
ing on the hardness of a novel lattice-based problem which we called the
large-vector-problem (LVP) (see [27] for a formal definition).

6.3.2 Threshold Variant

Assuming there are protocols ΠKGen and ΠDec which implement the base
PKE in a threshold manner, a threshold variant of our above Hybrid con-
struction is immediate. We simply apply the base threshold decryption
operation to c0, keeping the result in a shared form. The parties then se-
curely evaluate G, H′ and H′′ to perform the respective checks in Dechy

11 We also relied on perfect correctness in the G1 → G2 game-hop. At the same time, we could
have easily used the notion of “δ-correctness” (see Definition 2) for the same.

12 In fact, this is equivalent to the “ϵ-injectivity” property introduced in [51, 52] for deterministic
(base) PKE schemes in the context of obtaining tighter security proofs w.r.t. FO transforms
in the QROM. At a high level, a deterministic PKE scheme is said to be ϵ-injective if the
probability of the corresponding encryption function not being injective is bounded by ϵ where
the probability is again taken over generation of public/private key pairs.
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(see Figure 6.2). More concretely, by instantiating G, H′ and H′′ with MPC-
friendly sponge-like hash functions such as Rescue (see Subsection 6.1.2
above), our distributed decryption operation for Hybrid-based PKEhy con-
struction would consist of the following steps w.r.t. an input ciphertext
c = (c0, c1, c2, c3):

1. Absorb c1 into “sponge” G in the clear.13

2. Apply ΠDec for a distributed decryption of c0, keeping the result k in
shared form.

3. Securely absorb these shares of k into sponge H′′.

4. Securely evaluate the squeezing of H′′ to obtain c′3 in the clear.

5. Reject the ciphertext if c3 ̸= c′3.

6. Securely absorb the shares of k into sponge H′.

7. Securely evaluate squeezing of H′, keeping the output in shared form.

8. Securely absorb the shares of H′(k) into G.

9. Securely evaluate the squeezing of G to obtain c′2 in the clear.

10. Reject the ciphertext if c2 ̸= c′2.

11. Open k to all players.

12. Compute k = H(k) in the clear

13. Compute m = Decdem(k, c1) in the clear and output it.

6.4 summary

In this chapter, we presented a new variant of the KEM-DEM framework,
closely related to Tag-KEMs, which can be used to construct hybrid PKE
schemes with an efficient distributed decryption procedure. Moreover,
our generic framework – called the “Hybrid” transform – provably main-
tains IND-CCA security of the overall threshold implementation in a post-
quantum setting (i.e., in the QROM).

13 Since we are using a sponge-like function for G such as Rescue [98], or even SHA-3, we can
insert the first c1 argument for G during a distributed decryption in the clear as the ciphertext
(c0, c1, c2, c3) is supposed to be public.
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We also briefly discussed the potential applicability of our Hybrid frame-
work to certain schemes in the NIST PQC standardization process, such as
Classic McEliece and NTRU. Furthermore, given NIST’s recent interest to
standardize threshold cryptographic primitives, we hope our results inspire
further research into constructing more efficient – and post-quantum secure
– hybrid threshold public-key encryption.





7
C O N C L U S I O N S

In this thesis, we explored methods to enhance post-quantum secure public-
key encryption schemes in ways which are agnostic to the underlying
hardness assumptions. We focused particularly on PKE schemes that are a
part of NIST’s PQC standardization process. Concretely, this thesis consid-
ered the following enhancements:

IND-CCA Security Enhancements (Chapter 3). Most NIST PQC candidates
for PKE employ variants of the Fujisaki-Okamoto (FO) transformation [1–4]
to enhance their security to achieve the traditional notion of IND-CCA
security. However, as we argued in this thesis, certain important NIST PQC
schemes diverge from the standard FO transforms in ways which invalidate
their concrete IND-CCA security claims in a post-quantum setting (i.e., in
the QROM).

More specifically, we made a case study of two such schemes: namely,
the current NIST PQC standard Kyber [11], and the third-round alternate
candidate FrodoKEM [16] which is currently recommended by the German
federal agency BSI. We re-examined the FO-variants used in these two
schemes, and by focusing on the differences between these variants and
the standard FO transforms, we identified gaps in their initial IND-CCA
security claims. Following our observations, we re-established the concrete
IND-CCA security of Kyber and FrodoKEM in the QROM by tailoring our
analysis to handle the above differences in a rigorous manner.

Anonymity and Robust Enhancements (Chapters 4, 5). Given that the
NIST PQC standards are intended to be widely used for decades to come,
we argued for a broader analysis of these schemes with respect to security
properties that go beyond the target notions set by NIST – especially in
view of modern cryptographic applications that require such properties.
Focusing on the PKE primitive, we shortlisted two such “beyond IND-CCA”
properties in this thesis: namely, anonymity [12] and robustness [13]. We first
presented a generic analysis of anonymity and robustness for PKE schemes
built using the KEM-DEM paradigm, since this paradigm is used by most
NIST candidates. Also as noted above, most PKE candidates in the NIST
PQC process use underlying KEMs that are constructed from variants of
the standard FO transforms. In this thesis, we analyzed one such standard
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transform called FO ̸⊥ [4] with respect to its anonymity and robustness
enhancing properties in the QROM.

We then studied the applicability of our above generic analysis on FO ̸⊥-
based KEMs to three specific NIST PQC KEMs: namely, the current standard
Kyber [11], the third-round alternate candidate FrodoKEM [16], and the
fourth-round candidate – and BSI-recommended – Classic McEliece [21]. For
Classic McEliece, we showed that the scheme does not lead to robust KEM-
DEM hybrid PKE schemes using a concrete “attack”; this also meant that
our generic analysis cannot be extended to Classic McEliece to prove its post-
quantum anonymity. Fortunately, we were able to show that FrodoKEM
and Kyber do result in anonymous and robust hybrid PKE schemes in
the post-quantum setting. For FrodoKEM, we adapted our above QROM
analysis of FO ̸⊥ to the specific FO-variant used by the NIST scheme. For
the NIST standard Kyber, we adapted our techniques that were used to
establish its concrete IND-CCA security in the QROM above, in conjunction
with other recent techniques from the literature – namely, the so-called
“strong pseudorandomness” framework [60].

Threshold Enhancements (Chapter 6). NIST’s PQC standardization process
currently only considers the primitives of PKE and digital signatures with
basic functionalities. In view of NIST’s recent plans to also standardize more
advanced threshold schemes for (potentially post-quantum) cryptographic
primitives, we explored ways to enhance the decryption functionality of
quantum-resistant PKE schemes to a distributed setting. First, we identified
issues with the generic design paradigm used by most NIST PQC candi-
dates for PKE – i.e., the “FO + KEM-DEM” paradigm – in the context of
obtaining IND-CCA secure and efficient threshold schemes. We then pre-
sented an alternative to the above paradigm called the “Hybrid” framework
which overcomes the above issues; namely, our framework can be used to
generically construct PKE schemes that have an efficient distributed de-
cryption functionality, and at the same time are provably IND-CCA secure
in the QROM. We also briefly discussed the potential applicability of our
Hybrid framework to certain perfectly correct NIST PQC schemes such as the
fourth-round candidate Classic McEliece [21] and the third-round finalist
NTRU [23]. Regarding PKE schemes that may not be perfectly correct, we
discussed ways to extend our analysis – albeit in a non-generic manner.

Impact. A tangible real-world impact of this thesis can be seen in NIST’s
recent plans [18, 19] to essentially replace the FO-variant currently used by
the new PQC standard Kyber [11] with one of the standard FO transforms.
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As addressed by a representative of the Kyber team [20], this is in part
because of our arguments above on how the differences between Kyber’s
variant of the FO transform and the standard FO transforms invalidate the
initial QROM IND-CCA security claims made in Kyber’s NIST specification
document [11].

Regarding the impact of our results on applications that require properties
“beyond IND-CCA” security such as anonymity, a recent line of works [102–
104] have used Kyber in post-quantum instantiations of password-less au-
thentication methods defined in the Fast IDentity Online (FIDO) standards –
specifically related to users’ account recovery. This is enabled by our work
that established post-quantum anonymity of Kyber, which in-turn provides
privacy guarantees via unlinkability of users’ public keys in the view of
FIDO-based servers.

Finally, coming to NIST’s recent plans to standardize threshold crypto-
graphic schemes [24], our work on the aforementioned “Hybrid” framework
– specifically, its application in [27] to “thresholdize” the NIST PQC third-
round finalist Saber [62] – has found some interest in the community [105,
106], especially in the context of standardizing quantum-resistant (thresh-
old) Fully Homomorphic Encryption (FHE) schemes that are actively secure.
To be more specific, it was argued in [105, 106] that a potentially simpler
path to standardize such threshold FHE schemes is to standardize their
corresponding building blocks, which include threshold PKE schemes. And
it was suggested in [105, 106] that one could build upon our work on the
“Hybrid” framework to standardize such a class of FHE building blocks in
the post-quantum setting.

7.1 future work

In this thesis, we made significant progress towards generically enhancing
quantum-resistant PKE schemes – especially in the context of NIST’s PQC
standardization process. But our work also gives rise to some interesting
open problems, which we divide into the following three categories.

7.1.1 Tighter Analyses in the QROM

In our concrete QROM IND-CCA security analyses of Kyber and FrodoKEM
in Chapter 3, we mainly relied on the so-called “One-Way to Hiding (OW2H)
lemma” [36, 37]. However, tighter variants of the OW2H lemma have
since been introduced in the literature, e.g., in [51, 52]. At the same time,
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applying these variants to the aforementioned NIST PQC KEMs is not so
straightforward; it would require an analysis of the corresponding base
PKE schemes in a non-generic manner (i.e., dependent on the underlying
hardness assumptions) to check if the schemes satisfy the prerequisite
properties for applying the above tighter OW2H variants. Nonetheless,
doing such an analysis would lead to tighter IND-CCA security proofs for
Kyber and FrodoKEM in the QROM. It would also be interesting to study
these OW2H variants using a formal verification framework – similar in spirit
to Unruh’s work [56] – given the real-world importance of the above NIST
schemes, and as an extension, their corresponding security analyses. Finally,
our above observations also apply in the context of obtaining tighter proofs
of “beyond IND-CCA” security, such as anonymity (or, ANO-CCA security),
for Kyber, FrodoKEM, and other NIST candidates in the QROM.

7.1.2 “Beyond Anonymity, Robustness and Threshold” Enhancements

In this thesis, we looked at the NIST candidates for PKE through the lens
of modern “beyond IND-CCA” security properties such as anonymity
and robustness, and “beyond basic PKE” functionalities such as threshold
decryption. It would be interesting to expand this study to other important
properties and functionalities that are relevant for emerging cryptographic
applications. An example of one such property/functionality that was
quite recently considered in the literature is that of multi-receiver PKE [107].
Roughly speaking, such a scheme encrypts a message in a single-shot to
multiple receivers’ public keys, and can be more efficient when compared
to encrypting the message separately to each receiver using a basic PKE
scheme. Multi-receiver PKE schemes have applications in group-oriented
end-to-end secure messaging. These schemes were recently analysed in a
post-quantum setting in [108].

7.1.3 Generic v/s Non-Generic Analyses

Finally, note that most of our analyses in this thesis were generic and modu-
lar – i.e., they were not dependent on any particular post-quantum hardness
assumption, and only made black-box use of underlying basic primitives
(such as “weakly” secure base PKE schemes). The main reason for this, as
highlighted in Chapter 1, is that such analyses enable designers of enhanced
PKE schemes to focus on instantiating the basic primitives with appropriate
hardness assumptions; this is, in general, a much easier task when com-
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pared to directly constructing advanced schemes from such assumptions.
However at the same time, it is important not to lose sight of the advantages
offered by potentially non-generic analyses/constructions. For example,
in the context of our “Hybrid” framework in Chapter 6 for constructing
IND-CCA secure PKE schemes with efficient distributed decryption, note
that we make explicit use of a generic base multi-party computation (MPC)
functionality. This in-turn leads to many rounds of communication among
users during the threshold decryption procedure. Hence, it would be inter-
esting to develop an alternative framework which can potentially use MPC
in a non-generic way to reduce the communication complexity. To conclude,
it is important to analyse the trade-offs between generic and non-generic
solutions towards the goal of achieving enhanced public-key encryption
schemes in a post-quantum setting.
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