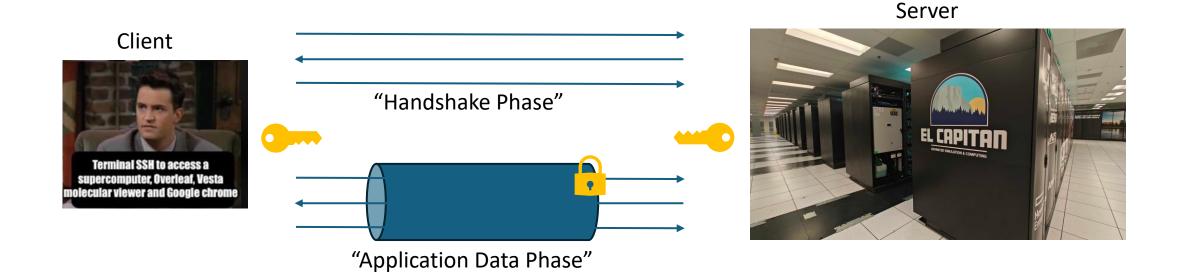

# Post-quantum Cryptographic Analysis of SSH



Varun Maram
Cybersecurity Group
SandboxAQ

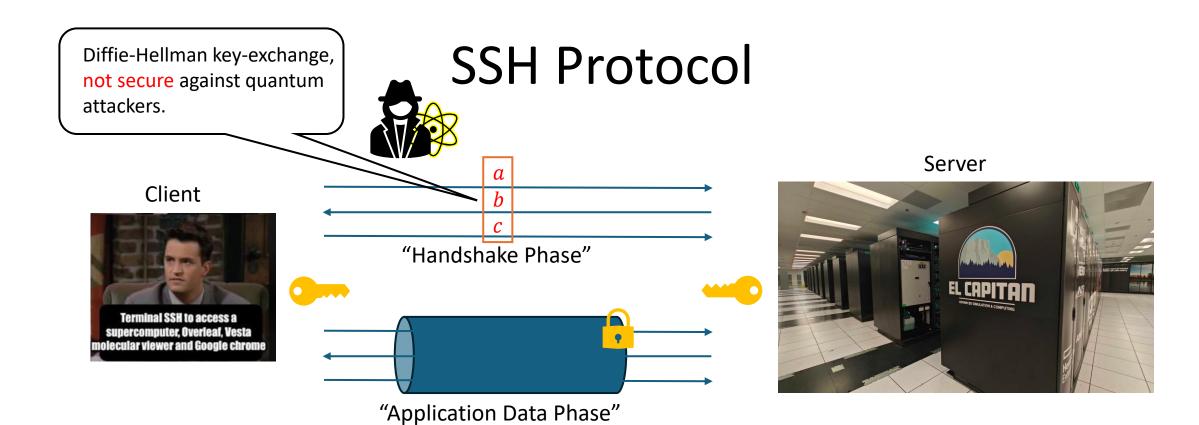





Joint work with Benjamin Benčina, Benjamin Dowling, and Keita Xagawa








## SSH Protocol



#### 2. Secure Shell (SSH)

- Use Case: Secure remote access to servers and encrypted file transfers (SCP, SFTP).
- **Description**: Uses public-key cryptography and symmetric encryption to secure login sessions over an unsecured network.



#### 2. Secure Shell (SSH)

- Use Case: Secure remote access to servers and encrypted file transfers (SCP, SFTP).
- **Description**: Uses public-key cryptography and symmetric encryption to secure login sessions over an unsecured network.



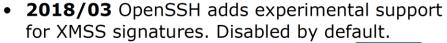
#### 2. Secure Shell (SSH)

- Use Case: Secure remote access to servers and encrypted file transfers (SCP, SFTP).
- **Description**: Uses public-key cryptography and symmetric encryption to secure login sessions over an unsecured network.

**SSH Protocol** 

"Hybridize" with (plausibly) quantum-secure KEM.

Server


#### Client



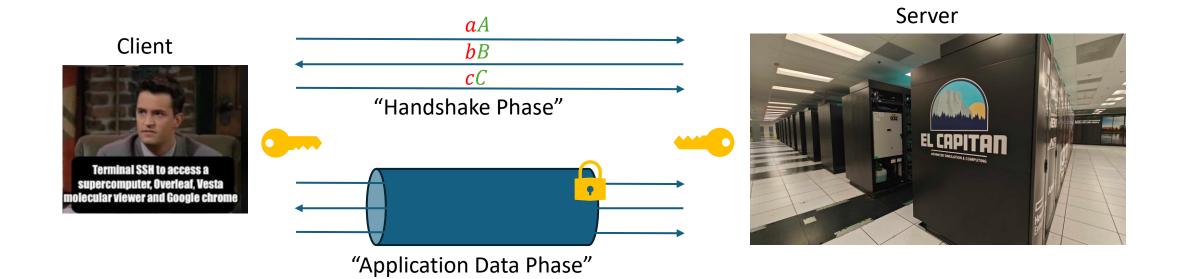
aA
bB
cC

"Handshake Phase"

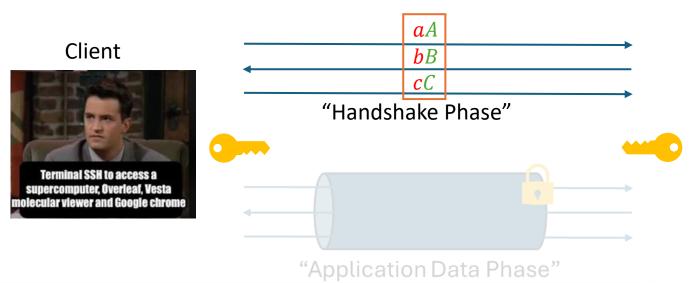
#### **History of PQC in SSH**



- 2018/12 TinySSH added support for hybrid Streamlined NTRU Prime / X25519 KEM sntrup4591761x25519-sha512
- 2019/01 OpenSSH added interoperable implementation labeled as experimental
- **2020/12** OpenSSH replaces implementation with sntrup761x25519-sha512
- **2021/11** OpenSSH includes sntrup761x25519-sha512 in the default client/server algorithms proposal
- **2022/02** OpenSSH promotes this algorithm the highest-preference position




gin sessions over


#### 2. Secure S

- Use Case:
- Descriptio an unsecu

## **Prior Analyses**



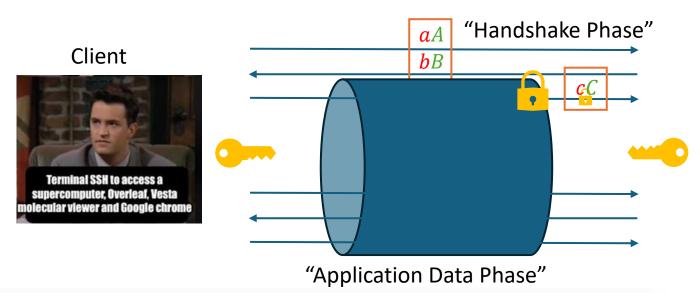
## **Prior Analyses**







Security of Hybrid Key Establishment using Concatenation


Adam Petcher and Matthew Campagna

Amazon Web Services

[ePrint '23]

 Prior works either analyze the hybrid key exchange in isolation, or...

## **Prior Analyses**







Security of Hybrid Key Establishment using

Post-quantum sound CRYPTOVERIF and verification of hybrid TLS and SSH key-exchanges

Bruno Blanchet Inria, F-75012 Paris, France bruno.blanchet@inria.fr Charlie Jacomme
Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France charlie.jacomme@inria.fr

[CSF '24]

- Prior works either analyze the hybrid key exchange in isolation, or...
- ... analyze post-quantum SSH in unsuitable protocol models, such as "authenticated key exchange (AKE)".

# #1: "Post-quantum SSH is cryptographically secure in practice."

#### Post-quantum Cryptographic Analysis of SSH

[S&P '25]

#### Benjamin Benčina

Royal Holloway, University of London, UK Email: benjamin.bencina.2022@live.rhul.ac.uk

> Varun Maram SandboxAQ, UK

Email: varun.maram@sandboxaq.com

#### Benjamin Dowling

King's College London, UK Email: benjamin.dowling@kcl.ac.uk

#### Keita Xagawa

Technology Innovation Institute, UAE Email: keita.xagawa@tii.ae

# #1: "Post-quantum SSH is cryptographically secure in practice."\*

(\*Analysis needs to assume a fix to the Terrapin Attack in the classical setting.)

#### Post-quantum Cryptographic Analysis of SSH

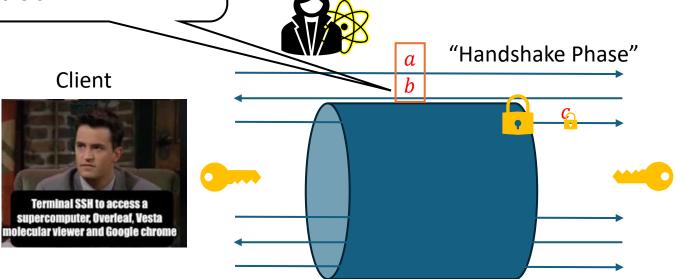
[S&P '25]

#### Benjamin Benčina

Royal Holloway, University of London, UK Email: benjamin.bencina.2022@live.rhul.ac.uk

Varun Maram
SandboxAQ, UK
Email: varun.maram@sandboxaq.com

#### Benjamin Dowling


King's College London, UK Email: benjamin.dowling@kcl.ac.uk

#### Keita Xagawa

Technology Innovation Institute, UAE Email: keita.xagawa@tii.ae



## **Our Contributions**



Server



"Application Data Phase"

#### Multi-ciphersuite security of the Secure Shell (SSH) protocol

Florian Bergsma<sup>1</sup>

Benjamin Dowling $^{2a}$ 

Florian Kohlar<sup>1</sup>

Jörg Schwenk<sup>1</sup>

Douglas Stebila $^{2a,2b}$ 

[CCS '14]

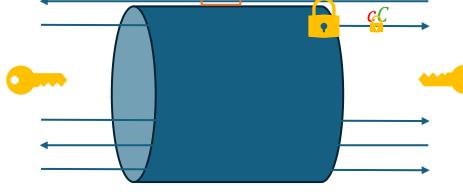
<sup>1</sup> Horst Görtz Institute, Ruhr-Universität Bochum, Bochum, Germany {florian.bergsma,florian.kohlar,joerg.schwenk}@rub.de

<sup>2a</sup> School of Electrical Engineering and Computer Science

<sup>2b</sup> School of Mathematical Sciences

<sup>2a,2b</sup> Queensland University of Technology, Brisbane, Australia {b1.dowling,stebila}@qut.edu.au

- [BDKSS14] proves security of SSH in the "authenticated and confidential channel establishment (ACCE)" model.
- However, analysis is in the classical Diffie-Hellman setting.


Our Contributions

"Hybridize" with (plausibly) quantum-secure KEM.

#### Client









#### Multi-ciphersuite security

#### **Post-quantum Cryptographic Analysis of SSH**

[S&P '25]

#### Benjamin Benčina

Royal Holloway, University of London, UK Email: benjamin.bencina.2022@live.rhul.ac.uk

Varun Maram
SandboxAQ, UK
Email: varun.maram@sandboxaq.com

#### Benjamin Dowling

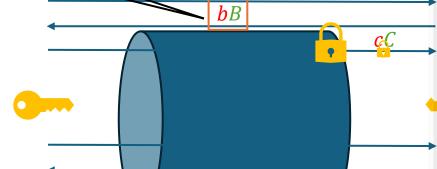
King's College London, UK Email: benjamin.dowling@kcl.ac.uk

#### Keita Xagawa

Technology Innovation Institute, UAE
Email: keita.xagawa@tii.ae

#### Server




- We establish security of SSH in a PQextension of ACCE model that accounts for "harvest now, decrypt later" attacks.
- Analysis also captures forward secrecy (unlike the classical ACCE analysis in [BDKSS14]).

## Our Contributions

"Hybridize" with (plausibly) quantum-secure KEM.







aA

"Application Data Phase"

#### Multi-ciphersuite security

#### **Post-quantum Cryptographic Analysis of SSH**

[S&P '25]

#### Benjamin Benčina

Royal Holloway, University of London, UK Email: benjamin.bencina.2022@live.rhul.ac.uk

Varun Maram SandboxAQ, UK

Email: varun.maram@sandboxaq.com

#### Benjamin Dowling

King's College London, UK
Email: benjamin.dowling@kcl.ac.uk

#### Keita Xagawa

Technology Innovation Institute, UAE Email: keita.xagawa@tii.ae



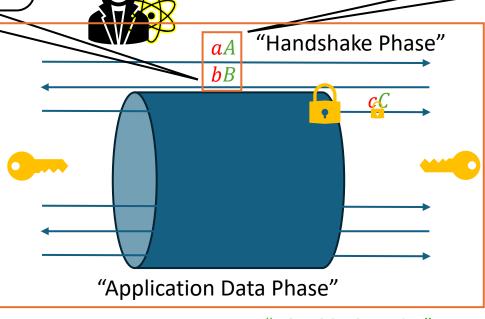
TERRAPIN ATTACK: BREAKING SSH CHANNEL INTEGRITY BY

SEQUENCE NUMBER MANIPULATION

Fabian Bäumer, Marcus Brinkmann, Jörg Schwenk | IACR RWC 2024

 We establish security of SSH in a PQextension of ACCE model that accounts for "harvest now, decrypt later" attacks.

 Analysis also captures forward secrecy (unlike the classical ACCE analysis in [BDKSS14]).


Can't manipulate "sequence numbers" in already finished handshakes.

Our Contributions

"Hybridize" with (plausibly) quantum-secure KEM.

#### Client





"PQ ACCE Security"

#### Server



- We establish security of SSH in a PQextension of ACCE model that accounts for "harvest now, decrypt later" attacks.
- Analysis also captures forward secrecy (unlike the classical ACCE analysis in [BDKSS14]).

Our Contributions Diffie-Hellman key-exchange, not secure against quantum attackers. "Handshake Phase" aAClient "Application Data Phase" "PQ ACCE Security" Digital Symmetric PRF KEM Signature Encryption "Pseudo-"IND-CPA" "BSAE" "EUF-CMA"

(passive security)

(Buffered Stateful(existentially unforgeable)

Authenticated Encryption)

"Hybridize" with (plausibly) quantum-secure KEM.

#### Server



- We establish security of SSH in a PQextension of ACCE model that accounts for "harvest now, decrypt later" attacks.
- Analysis also captures forward secrecy (unlike the classical ACCE analysis in [BDKSS14]).

random"

**Our Contributions** 

"Hybridize" with (plausibly) quantum-secure KEM.

#### Client



aA "Handshake Phase"

"Application Data Phase"

"PQ ACCE Security"

Digital

Signature

PRF

"Pseudo-random"

KEM

"IND-CPA" (passive security)

Symmetric Encryption

"DCAF"

"BSAE" "EUF-CMA"
(Buffered Stateful(existentially unforgeable)

Authenticated

Encryption)

Server



- We establish security of SSH in a PQextension of ACCE model that accounts for "harvest now, decrypt later" attacks.
- Analysis also captures forward secrecy (unlike the classical ACCE analysis in [BDKSS14]).
- We then prove corresponding PQ security properties of SSH primitives.

# #2: "Post-quantum SSH <u>can</u> be more efficient, and eco(log|nom)ical."

#### Post-quantum Cryptographic Analysis of SSH

[S&P '25]

#### Benjamin Benčina

Royal Holloway, University of London, UK Email: benjamin.bencina.2022@live.rhul.ac.uk

> Varun Maram SandboxAO, UK

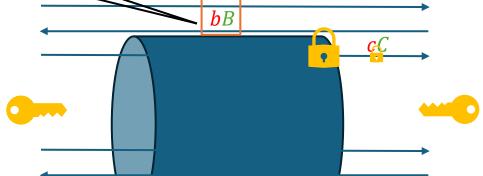
Email: varun.maram@sandboxaq.com

#### Benjamin Dowling

King's College London, UK Email: benjamin.dowling@kcl.ac.uk

#### Keita Xagawa

Technology Innovation Institute, UAE Email: keita.xagawa@tii.ae


## **Our Contributions**

"Handshake Phase"

"Hybridize" with (plausibly) quantum-secure KEM.





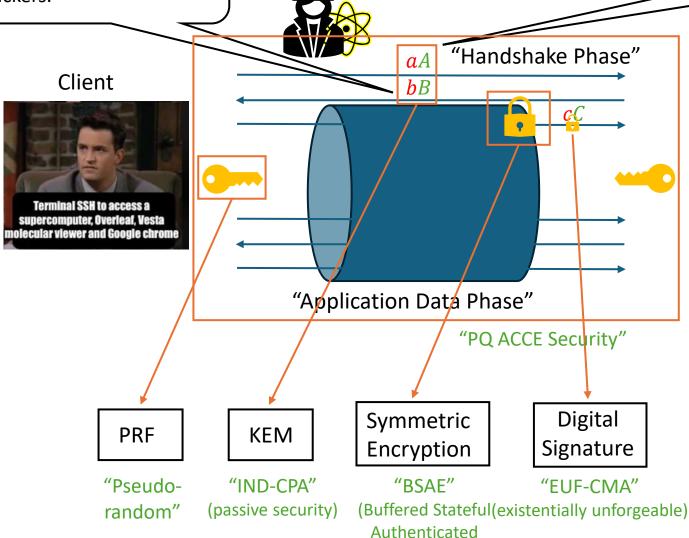


"Application Data Phase"

Post-quantum sound CryptoVerif and verification of hybrid TLS and SSH key-exchanges

Theorem 5 (Post-quantum SSH security, simplified)

Under the post-quantum IND-CCA2 assumption for the KEM, the post-quantum PRF assumption for dPRF and PRFc, the CR assumption for h, the classical EUF-CMA assumption for signatures, the hybrid SSH key exchange ensures forward secrecy even against quantum attackers, provided quantum attackers do not exist yet when the handshake is performed.


Server



 PQ-SSH analysis of [BlaJac24] relies on IND-CCA secure (ephemeral) KEMs.

**Our Contributions** 

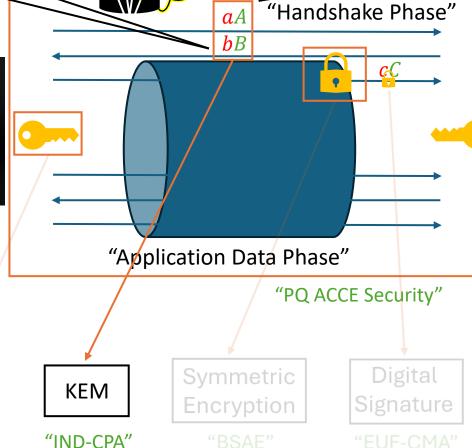
"Hybridize" with (plausibly) quantum-secure KEM.



**Encryption**)

Server




PQ-SSH analysis of [BlaJac24] relies on IND-CCA secure (ephemeral) KEMs.

**Our Contributions** 

"Hybridize" with (plausibly) quantum-secure KEM.

### Client



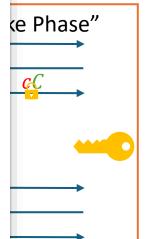


#### Server



- PQ-SSH analysis of [BlaJac24] relies on IND-CCA secure (ephemeral) KEMs.
- Whereas our analysis relies on the weaker property of IND-CPA security.

PRF


(passive security)

## Our Contributions

"Hybridize" with (plausibly) quantum-secure KEM.



- **2018/03** OpenSSH adds experimental support for XMSS signatures. Disabled by default.
- **2018/12** TinySSH added support for hybrid Streamlined NTRU Prime / X25519 KEM sntrup4591761x25519-sha512
- 2019/01 OpenSSH added interoperable implementation labeled as experimental
- 2020/12 OpenSSH replaces implementation with sntrup761x25519-sha512
- **2021/11** OpenSSH includes sntrup761x25519-sha512 in the default client/server algorithms proposal
- **2022/02** OpenSSH promotes this algorithm the highest-preference position



Security"

Server



- PQ-SSH analysis of [BlaJac24] relies on IND-CCA secure (ephemeral) KEMs.
- Whereas our analysis relies on the weaker property of IND-CPA security.
- Our analysis suggests FO transform is not needed, which in turn can lead to performance improvements in PQ-SSH.



D. Miller, "OpenSSH PQC: Past, Present, Future", RWPQC 2024 [BlaJac24]: B. Blanchet, C. Jacomme, "Post-quantum sound CryptoVerif and verification of hybrid TLS and SSH key-exchanges", CSF 2024

Table 1. IND-CCA vs IND-CPA benchmarks w.r.t. ephemeral KEMs in post-quantum SSH.

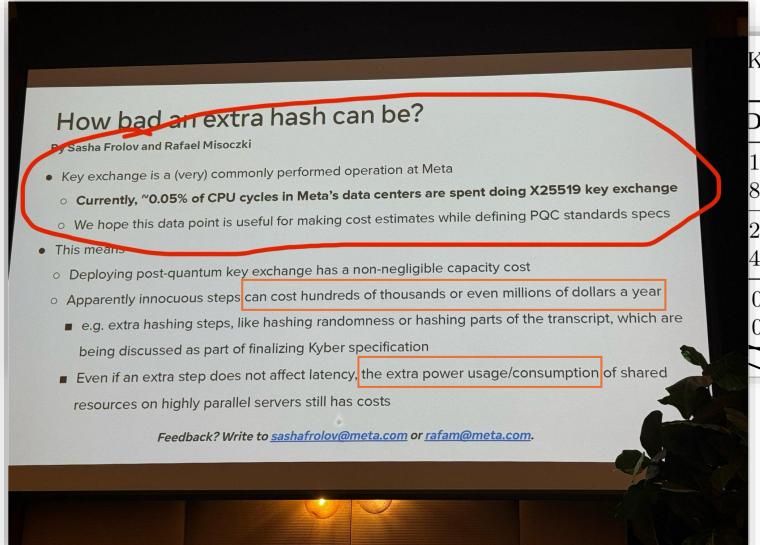
| $\mathbf{Scope}$                                       | $\mathbf{KEM}$                                  | IND-CCA[s]                                   | IND-CPA[s] S       | ${f Speedup}[\%]$ |
|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------|-------------------|
| Primitive-level                                        | sntrup761<br>mlkem768                           | $2.8164 \cdot 10^{-2}  2.7853 \cdot 10^{-5}$ |                    | 3.93<br>52.46     |
| (CPU timings of all KEM operations)                    | sntrup761×25519-sha512<br>mlkem768×25519-sha256 |                                              |                    | 3.91<br>1.26      |
| Protocol-level (Networks timings of an SSH connection) | sntrup761x25519-sha512<br>mlkem768x25519-sha256 | $0.1565 \\ 0.1325$                           | $0.1534 \\ 0.1316$ | 1.98<br>0.68      |

Table 1. IND-CCA vs IND-CPA benchmarks w.r.t. ephemeral KEMs in post-quantum SSH.

| Scope                                                  | KEM                                             | IND-CCA[s]                                   | IND-CPA[s]         | Speedup[%]    |
|--------------------------------------------------------|-------------------------------------------------|----------------------------------------------|--------------------|---------------|
| Primitive-level                                        | sntrup761<br>mlkem768                           | $2.8164 \cdot 10^{-2}  2.7853 \cdot 10^{-5}$ |                    | 3.93<br>52.46 |
| (CPU timings of all KEM operations)                    | sntrup761×25519-sha512<br>mlkem768×25519-sha256 |                                              |                    | 3.91<br>1.26  |
| Protocol-level (Networks timings of an SSH connection) | sntrup761x25519-sha512<br>mlkem768x25519-sha256 | $0.1565 \\ 0.1325$                           | $0.1534 \\ 0.1316$ | 1.98<br>0.68  |

Measurement w.r.t. a single SSH connection.

Small performance gains should accumulate in large scale SSH deployments.


Table 1. IND-CCA vs IND-CPA benchmarks w.r.t. ephemeral KEMs in post-quantum SSH.

| Scope                                                  | KEM                                                      | IND-CCA[s]      | IND-CPA[s] S                                 | Speedup[%]    |
|--------------------------------------------------------|----------------------------------------------------------|-----------------|----------------------------------------------|---------------|
| Primitive-level                                        | sntrup761<br>mlkem768                                    |                 | $2.7056 \cdot 10^{-2}  1.3242 \cdot 10^{-5}$ | 3.93<br>52.46 |
| (CPU timings of all KEM operations)                    | sntrup761×25519-sha512<br>mlkem768×25519-sha256          |                 |                                              | 3.91<br>1.26  |
| Protocol-level (Networks timings of an SSH connection) | sntrup761×25 <b>51</b> 9-sha512<br>mlkem768×25519-sha256 | 0.1565 $0.1325$ | $0.1534 \\ 0.1316$                           | 1.98<br>0.68  |

Measurement w.r.t. a single SSH connection.

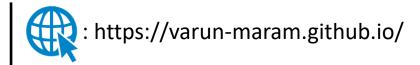
Small performance gains should accumulate in large scale SSH deployments.

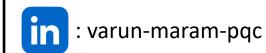
IND-CCA  $\rightarrow$  IND-CPA leads to  $\approx$ 80% reduction in hash computations.



KEMs in post-quantum SSH.

### $ext{D-CCA[s] IND-CPA[s] Speedup[\%]}$


| $164 \cdot 10^{-2} \\ 853 \cdot 10^{-5}$ | $2.7056 \cdot 10^{-2} $ $1.3242 \cdot 10^{-5}$ | $3.93 \\ 52.46$ |  |
|------------------------------------------|------------------------------------------------|-----------------|--|
| $290 \cdot 10^{-2} 412 \cdot 10^{-3}$    | $2.9105 \cdot 10^{-2} \\ 3.1015 \cdot 10^{-3}$ | 3.91<br>1.26    |  |
| $0.1565 \\ 0.1325$                       | $0.1534 \\ 0.1316$                             | 1.98<br>0.68    |  |


IND-CCA  $\rightarrow$  IND-CPA leads to  $\approx$ 80% reduction in hash computations.

# Post-quantum Cryptographic Analysis of SSH



Varun Maram
Cybersecurity Group
SandboxAQ





Joint work with Benjamin Benčina, Benjamin Dowling, and Keita Xagawa

[Full version of paper: <a href="https://eprint.iacr.org/2025/684.pdf">https://eprint.iacr.org/2025/684.pdf</a>]