On Broadcast in Generalized Network and Adversarial Models

Varun Maram 7th December 2020

Joint work with Chen-Da Liu-Zhang and Ueli Maurer Department of Computer Science, ETH Zurich

Setting

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- Synchronous
- No PKI setup

Setting

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- Synchronous
- No PKI setup

Setting

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- Synchronous
- No PKI setup

Setting

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- Synchronous
- No PKI setup

Adversary

- Static
- Active (Byzantine)
- Unbounded

Setting

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- Synchronous
- No PKI setup

Adversary

- Static
- Active (Byzantine)
- Unbounded

Classical model

[PSL80]:

"Broadcast possible if and only if t < n/3"

Classical model

[PSL80]:

"Broadcast possible if and only if t < n/3"

Can we tolerate more?

3-minicast model

[FM00]:

"Broadcast possible if and only if t < n/2"

3-minicast model

[FM00]:

"Broadcast possible if and only if t < n/2"

Trade-off b/w power of network and power of adversary?

Adversary structure	Network structure	Reference
t < n/3	Bilateral channels	[PSL80]
t < n/2	3-minicast channels	[FM00]

Adversary structure	Network structure	Reference
t < n/3	Bilateral channels	[PSL80]
t < n/2	3-minicast channels	[FM00]
$t < \frac{b-1}{b+1}n$	<i>b</i> -minicast channels	[CFF+05]

	Adversary structure	Network structure	Reference
Threshold: t < T	t < n/3	Bilateral channels	[PSL80]
	t < n/2	3-minicast channels	[FM00]
	$t < \frac{b-1}{b+1}n$	b-minicast channels	[CFF+05]

What's left to be done?

What's left to be done?

General networks

	Adversary structure	Network structure	Reference
Threshold: $t < T$	$n/3 \le t < n/2$	Some 3-minicast channels	[RVS ⁺ 04], [JMS12]

General networks

	Adversary structure	Network structure	Reference
Threshold: t < T	$n/3 \le t < n/2$	Some 3-minicast channels	[RVS ⁺ 04], [JMS12]
_			
General: $A = \{A_1, A_2, \dots, A_k\} -$	A contains b-chain(s) and A is $(b + 1)$ -chain free	Some <i>b</i> -minicast channels	[LMM20]
$A_i \subseteq P$	$(A \in \mathfrak{A}^{(b)})$		

- 3-minicast model
- Six parties
- $t \leq 3$

- 3-minicast model
- Six parties
- $t \leq 3$
- Broadcast is impossible [CFF+05]

- 4-minicast model
- Six parties
- $t \leq 3$

- 4-minicast model
- Six parties
- $t \leq 3$
- Broadcast is possible [CFF+05]

- Some 4-minicast channels
- Six parties
- $t \leq 3$

- Some 4-minicast channels
- Six parties
- $t \leq 3$

- Some 4-minicast channels
- Six parties
- $t \leq 3$

- Some 4-minicast channels
- Six parties
- $t \leq 3$

- Some 4-minicast channels
- Six parties
- $t \leq 3$

- Some 4-minicast channels
- Six parties
- $A = \{A_1, A_2, \dots, A_k\}$ $(|A_i| = 3)$

- Some 4-minicast channels
- Six parties
- $A = \{A_1, A_2, \dots, A_k\}$ $(|A_i| = 3)$

- Some 4-minicast channels
- Six parties
- $A = \{A_1, A_2, \dots, A_k\}$ $(|A_i| = 3)$

- Some 4-minicast channels
- Six parties
- $A = \{A_1, A_2, \dots, A_k\}$ $(|A_i| = 3)$

- Some 4-minicast channels
- Six parties
- $A = \{A_1, A_2, \dots, A_k\}$ $(|A_i| = 3)$
- Broadcast is possible [LMM20]

A is b-chain free \Rightarrow A is (b + 1)-chain free

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, ..., S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty *S_i*'s

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, \dots, S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty *S_i*'s
- $P \setminus (S_i \cup S_{i+1}) \in A$, for every i

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, \dots, S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty *S_i*'s
- $P \setminus (S_i \cup S_{i+1}) \in A$, for every i

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, \dots, S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty *S_i*'s
- $P \setminus (S_i \cup S_{i+1}) \in A$, for every i

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, \dots, S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty *S_i*'s
- $P \setminus (S_i \cup S_{i+1}) \in A$, for every i

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, \dots, S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty *S_i*'s
- $P \setminus (S_i \cup S_{i+1}) \in A$, for every i

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, \dots, S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty S_i 's
- $P \setminus (S_i \cup S_{i+1}) \in A$, for every i

- *n* parties
- adversary has *b*-chain
- (b-1)-minicast model
- Broadcast is impossible

- b parties
- adversary has *b*-chain
- (b-1)-minicast model
- Broadcast is impossible

- *n* parties
- adversary has *b*-chain
- (b-1)-minicast model
- Broadcast is impossible

- *b* parties
- adversary has *b*-chain
- (b-1)-minicast model (complete)
- Broadcast is impossible

- b parties
- adversary has *b*-chain
- (b 1)-minicast model (complete)
- Broadcast is impossible

- n parties
- adversary has *b*-chain
- *b*-minicast model (incomplete)
- Broadcast is impossible

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks only if:

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks only if:

• for every *b*-chain in *A* of the form $(S_1, S_2, ..., S_b)$,

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks only if:

- for every *b*-chain in *A* of the form $(S_1, S_2, ..., S_b)$,
- there is a *b*-minicast channel that has non-empty intersection with each of the sets S_1, S_2, \ldots, S_b .

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks only if, for every *b*-chain in *A*, there is a *b*-minicast channel of a corresponding form.

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks only if:

- for every *b*-chain in *A* of the form $(S_1, S_2, ..., S_b)$,
- there is a *b*-minicast channel that has non-empty intersection with each of the sets S_1, S_2, \ldots, S_b .

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks only if, for all k ($3 \le k \le b$):

- for every k-chain in A of the form $(S_1, S_2, ..., S_k)$,
- there is a k-minicast channel that has non-empty intersection with each of the sets S_1, S_2, \ldots, S_k .

Non-essential minicasts

- *n* parties
- adv. is (b + 1)-chain free
- *b*-minicast model (complete)
- Broadcast is possible [Ray15]

Non-essential minicasts

- *n* parties
- adv. is (b + 1)-chain free
- *b*-minicast model (complete)
- Broadcast is possible [Ray15]

- *n* parties
- adv. is (b + 1)-chain free
- *b*-minicast model (incomplete)
- Broadcast is possible

Non-essential minicasts

- *n* parties
- adv. is (b + 1)-chain free
- *b*-minicast model (complete)

- Broadcast is possible [Ray15]

- *n* parties
- adv. is (b + 1)-chain free
- *b*-minicast model (incomplete)
- Broadcast is possible

<u>Idea</u>: Simulate *missing/non-essential b*-minicast channels with *local* executions of [Ray15]'s protocol.

- b parties
- adv. is *b*-chain free
- (b 1)-minicast model (complete)
- Broadcast is possible [Ray15]

- b parties
- adv. is *b*-chain free (locally restricted)
- (b 1)-minicast model (complete)
- Broadcast is possible [Ray15]

- b parties
- The projected adv. is *b*-chain free
- (b 1)-minicast model (complete)
- Broadcast is possible [Ray15]

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks if:

• there is a complete set of (b-1)-minicast channels, and

- there is a complete set of (b-1)-minicast channels, and
- for each subset of parties ρ of size b:

- there is a complete set of (b-1)-minicast channels, and
- for each subset of parties ρ of size b:
 - if $A[\rho]$ contains a *b*-chain,

- there is a complete set of (b 1)-minicast channels, and
- for each subset of parties ρ of size b:
 - if $A[\rho]$ contains a *b*-chain,
 - there is a b-minicast channel among ho

- there is a complete set of bilateral channels, and
- for each subset of parties ρ of size k ($3 \le k \le b$):
 - if $A[\rho]$ contains a k-chain,
 - there is a k-minicast channel among ho

[LMM20]: For adversary structures $A \in \mathfrak{A}^{(b)}$, broadcast is achievable in general networks if:

- there is a complete set of bilateral channels, and
- for each subset of parties ρ of size k ($3 \le k \le b$):
 - if $A[\rho]$ contains a k-chain,
 - there is a k-minicast channel among ho

Condition <u>non-trivial</u> for certain weak class of adversaries in $\mathfrak{A}^{(b)}$, namely <u>b</u>-chain adversaries.

 $(A \in \mathfrak{A}^{(b)})$: A contains b-chain(s) and A is (b + 1)-chain free

 $(A \in \mathfrak{A}^{(b)})$: A contains b-chain(s) and A is (b + 1)-chain free

A *b*-chain adversary just contains a (single) *b*-chain, and nothing more

- Parties: $P = \{P_1, P_2, ..., P_n\}$
- General: $A = \{A_1, A_2, \dots, A_k\}, A_i \subseteq P$
- Partition: $S = (S_1, S_2, \dots, S_b)$
 - $\bigcup_{i=1}^{b} S_i = P$
 - $S_i \cap S_j = \emptyset$
 - non-empty *S_i*'s
- $P \setminus (S_i \cup S_{i+1}) \in A$, for every i

 S_1 S_2 Parties: $P = \{P_1, P_2, ..., P_n\}$ • General: $A = \{A_1, A_2, ..., A_k\},\$ ٠ $A_i \subseteq P$ S_6 S_3 Partition: $S = (S_1, S_2, \dots, S_b)$ • • $\bigcup_{i=1}^{b} S_i = P$ A_1 • $S_i \cap S_j = \emptyset$ • non-empty S_i 's *b*-chain adversary corresponding to *S*: • S_5 S_4 $A^{S} = \{P \setminus (S_{i} \cup S_{i+1}) \mid 1 \leq i \leq b\}$

• Given any *b*-chain adversary A^S :

- Given any *b*-chain adversary A^S :
 - it belongs to the class $\mathfrak{A}^{(b)}$ (i.e., is also (b + 1)-chain free). [LMM20]

- Given any *b*-chain adversary A^S :
 - it belongs to the class $\mathfrak{A}^{(b)}$ (i.e., is also (b + 1)-chain free). [LMM20]
 - there exist subsets of parties ρ ($|\rho| = b$) such that $A^{S}[\rho]$ is *b*-chain free (i.e., *b*-minicast channel among ρ is *non-essential*). [LMM20]

Other results

• Our conditions allow us to derive bounds on the no. of *b*-minicast channels that are necessary and that suffice in achieving global broadcast in general networks secure against general adversaries.

Other results

- Our conditions allow us to derive bounds on the no. of *b*-minicast channels that are necessary and that suffice in achieving global broadcast in general networks secure against general adversaries.
 - Thereby providing a way to extend [JMS12]'s quantitative analysis in general 3-minicast networks to higher *b*-minicast networks.

Open problems

• Providing tighter necessary and sufficient conditions on general networks for achieving broadcast while tolerating general adversaries.

Open problems

- Providing tighter necessary and sufficient conditions on general networks for achieving broadcast while tolerating general adversaries.
 - We showed that a straightforward extension of a technique (so-called virtual party emulation) used by [RVS⁺04] in deriving such tight conditions in general 3-minicast networks does not generalize to higher b-minicast networks.

Open problems

- Providing tighter necessary and sufficient conditions on general networks for achieving broadcast while tolerating general adversaries.
 - We showed that a straightforward extension of a technique (so-called virtual party emulation) used by [RVS⁺04] in deriving such tight conditions in general 3-minicast networks does not generalize to higher b-minicast networks.
- Implications of such results on broadcast in general *b*-minicast networks, secure against general adversaries, in a realistic setting.