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Random Oracle Model (ROM)

Formalized by [Bellare-Rogaway’93].
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Abstract. This paper investigates the Random Oracle Model (ROM)
feature known as programmability, which allows security reductions in
C r to S Ste m the ROM to dynamically choose the range points of an ideal hash func-

y p y tion. This property is interesting for at least two reasons: first, because
of its seeming artificiality (no standard model hash function is known to
support such adaptive programming); second, the only known security
reductions for many important cryptographic schemes rely fundamen-
tally on programming. We provide formal tools to study the role of pro-
grammability in provable security. This includes a framework describing
three levels of programming in reductions (none, limited, and full). We
then prove that mo black-box reductions can be given for FDH signa-
tures when only limited programming is allowed, giving formal support
for the intuition that full programming is fundamental to the provable
security of FDH. We also show that Shoup’s trapdoor-permutation-based
key-encapsulation is provably CCA-secure with limited programmability,
but no black-box reduction succeeds when no programming at all is per-
mitted. Our negative results use a new concrete-security variant of Hsiao
and Reyzin’s two-oracle separation technique.
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Non Observability in the Random Oracle Model

Prabhanjan Ananth and Raghav Bhaskar
Microsoft Research India
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[ProvSec’13]
Abstract

The Random Oracle Model, introduced by Bellare and Rogaway, provides a method to
heuristically argue about the security of cryptographic primitives and protocols. The basis
of this heuristic is that secure hash functions are close enough to random functions in their
behavior, and so, a primitive that is secure using a random function should continue to remain
secure even when the random function is replaced by a real hash function. In the security
proof, this setting is realized by modeling the hash function as a random oracle. However, this
approach in particular also enables any reduction, reducing a hard problem to the existence of
an adversary, to observe the queries the adversary makes to its random oracle and to program
the responses that the oracle provides to these queries. While, the issue of programmability of
query responses has received a lot of attention in the literature, to the best of our knowledge,
observability of the adversary’s queries has not been identified as an artificial artefact of the
Random Oracle Model. In this work, we study the security of several popular schemes when
the security reduction cannot “observe” the adversary’s queries to the random oracle, but can
(possibly) continue to “program” the query responses. We first show that RSA-PFDH and
Schnorr’s signatures continue to remain secure when the security reduction is non observing
(NO reductions), which is not surprising as their proofs in the random oracle model rely on
programmability. We also provide two example schemes, namely, Fischlin’s NIZK-PoK [Fis05]
and non interactive extractable commitment scheme, extractor algorithms of which seem to rely
on observability in the random oracle model. While we prove that Fischlin’s online extractors
cannot exist when they are non observing, our extractable commitment scheme continues to
be secure even when the extractors are non observing. We also introduce Non Observing Non
Programming reductions which we believe are closest to standard model reductions.

NO ROM

“Non-Observability”

dih

B

Random
Oracle

1

Cryptosystem



Non-Observable ROM (NO ROM

Non Observability in the Random Oracle Model

Prabhanjan Ananth and Raghav Bhaskar
Microsoft Research India
Bangalore 560001

[ProvSec’13]
Abstract

The Random Oracle Model, introduced by Bellare and Rogaway, provides a method to
heuristically argue about the security of cryptographic primitives and protocols. The basis
of this heuristic is that secure hash functions are close enough to random functions in their
behavior, and so, a primitive that is secure using a random function should continue to remain
secure even when the random function is replaced by a real hash function. In the security
proof, this setting is realized by modeling the hash function as a random oracle. However, this
approach in particular also enables any reduction, reducing a hard problem to the existence of
an adversary, to observe the queries the adversary makes to its random oracle and to program
the responses that the oracle provides to these queries. While, the issue of programmability of
query responses has received a lot of attention in the literature, to the best of our knowledge,
observability of the adversary’s queries has not been identified as an artificial artefact of the
Random Oracle Model. In this work, we study the security of several popular schemes when
the security reduction cannot “observe” the adversary’s queries to the random oracle, but can
(possibly) continue to “program” the query responses. We first show that RSA-PFDH and
Schnorr’s signatures continue to remain secure when the security reduction is non observing
(NO reductions), which is not surprising as their proofs in the random oracle model rely on
programmability. We also provide two example schemes, namely, Fischlin’s NIZK-PoK [Fis05]
and non interactive extractable commitment scheme, extractor algorithms of which seem to rely
on observability in the random oracle model. While we prove that Fischlin’s online extractors
cannot exist when they are non observing, our extractable commitment scheme continues to
be secure even when the extractors are non observing. We alsG itroduce Non Observing Non
Programming reductions which we believe are closes "d model reductions.
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proof, this setting is realized by modeling the hash function as a random oracle. However, this
approach in particular also enables any reduction, reducing a hard problem to the existence of
an adversary, to observe the queries the adversary makes to its random oracle and to program
the responses that the oracle provides to these queries. While, the issue of programmability of
query responses has received a lot of attention in the literature, to the best of our knowledge,
observability of the adversary’s queries has not been identified as an artificial artefact of the
Random Oracle Model. In this work, we study the security of several popular schemes when
the security reduction cannot “observe” the adversary’s queries to the random oracle, but can
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Schnorr’s signatures continue to remain secure when the security reduction is non observing
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and non interactive extractable commitment scheme, extractor algorithms of which seem to rely
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Abstract

The random oracle model (ROM), introduced by Bellare and Rogaway (CCS 1993), enables a formal security
proof for many (efficient) cryptographic primitives and protocols, and has been quite impactful in practice. However,
the security model also relies on some very strong and non-standard assumptions on how an adversary interacts with
a cryptographic hash function, which might be unrealistic in a real world setting and thus could lead one to question
the validity of the security analysis. For example, the ROM allows adaptively programming the hash function or
observing the hash evaluations that an adversary makes.

We introduce a substantially weaker variant of the random oracle model in the post-quantum setting, which we
call non-observable quantum random oracle model (NO QROM). Our model uses weaker heuristics than the quantum
random oracle model by Boneh, Dagdelen, Fischlin, Lehmann, Schaffner, and Zhandry (ASIACRYPT 2011), or the
non-observable random oracle model proposed by Ananth and Bhaskar (ProvSec 2013). At the same time, we show
that our model is a viable option for establishing the post-quantum security of many cryptographic schemes by
proving the security of important primitives such as extractable non-malleable commitments, digital signatures, and
chosen-ciphertext secure public-key encryption in the NO QRO
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a cryptographic hash function, which might be unrealistic in a real world setting and thus could lead one to question
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Captures ability of an adversary to
evaluate a public hash function in
superposition in a PQ setting.

Tremendous progress has been
made to adapt ROM security proofs
to the QROM setting.
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Non-Observable QROM (NO QROM)

E.g., replacing H with an
indistinguishable

Reduction function F.

“"‘ [Polynomial sized}
Adversary Random
Oracle

Setup phase

Reduction Q

Adversary

Query phase

e Our above model also allows non-adaptive (but not adaptive) programmability.

G~
b AAAAA

Interaction
potentially quantum.

“Programmed”
Oracle

e C(Classical NO ROM of [Ananth-Bhaskar’13] uses a stateful Turing machine to model random oracle.
* Maintaining a state incompatible w.r.t. random oracle queries in quantum superposition.
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Replace H' with a random
polynomial F of degree
(Zq — 1) over [F2|Msg|+|r|.

Perfect indistinguishability
of H and F follows from
[Zhandry’12a].

[ Polynomial F.

“Textbook” hash-based commitment:
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Random
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[Com = F(x)||H" (x)
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Com

“Textbook” hash-based commitment: H
Com = H(Msg, 1)

= H'(Msg,7)||H' (Msg,7)

Programmed
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H':{0,1}Mssl+I"| H': {0,1}IMsgI+|r|
N {0’1}|Msg|+|r| N {0,1}w(log7\)
: H"(x') = y,. _RO/OUL-—" Oracle

_Sa(rjne domain a'ndd Required for )
co-somain regwre (statistical) binding.

for extraction. Query phase
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“Textbook” hash-based commitment:
Com = H(Msg, 1)
= H'(Msg,7)||H"' (Msg,r)

Programmed
Oracle
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N {0’1}|M58|+|7”|

N {0,1}w(log A)
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co-domain required
for extraction.

Required for
(statistical) binding.

Query phase



Extractable Commitments in NO QROM

Com = F(x)||H" (x) Msg @ Similar extraction technique
2 ¥, ‘I‘ used by [Targhi-Unruh’16] in
the context of plain QROM

“Textbook” hash-based commitment:
Com = H(Msg, 1)
= H'(Msg,7)||H"' (Msg,r)

Q security of FO transforms.

Programmed
U PRVAVAVAVAVEF ~ S
H'- {0’1}|Msg|+|1‘| H'- {0’1}|Msg|+|r|
N {0’1}|Msg|+|r| N {0,1}w(log7\)
Random
Oracle

Same domain and
co-domain required
for extraction.

Required for

(statistical) binding. Query phase
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e (Obtained shorter

“Non-Observability’ Extractable commitments using “small-
commitments range distribution”
technique of [Zhandry’12b]
* However, requires
superpolynomial extractors.
{E; '\]\I\N\I Random MA o e
‘ ‘ Oracle ‘v '+ ~w v * Showed hiding property of
our commitments via the
A‘ l notion of non-malleability.

Cryptosystem

Formalized by [Alamati-Maram-Masny’23].
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Formalized by [Bellare-Rogaway’93].
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Trapdoor %Q&
Permutation (TDP)

e Shown to be secure in the classical NO
ROM by [Ananth-Bhaskar’13].

_ _ Random
* However, their proof breaks down in ‘ ‘ Oracle
the quantum setting.

1

Full-Domain Hash
(FDH) Signature

Formalized by [Bellare-Rogaway’93].
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Shown to be secure in the classical NO 9

ROM by [Ananth-Bhaskar’13].

Random
* However, their proof breaks down in Oracle
the guantum setting.
We prove security of FDH signatures in the “ l
NO QROM [Alamati-Maram-Masny’23]. Full-Domain Hash
* Adapted [Zhandry’12a]’s plain QROM (FDH) Signature

security proof.
Formalized by [Bellare-Rogaway’93].
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Quantum-secure?

Trapdoor
Permutation (TDP)

Shown to be secure in the classical NO
ROM by [Ananth-Bhaskar’13].
* However, their proof breaks down in
the guantum setting.

We prove security of FDH signatures in the
NO QROM [Alamati-Maram-Masny’23].
* Adapted [Zhandry’12a]’s plain QROM
security proof.

However, no concrete instantiations of
post-quantum TDPs known.

SO

\

Random
Oracle

1

Full-Domain Hash
(FDH) Signature

Formalized by [Bellare-Rogaway’93].
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Formalized by [Boneh-Dagdelen-Fischlin-
Lehmann-Schaffner-Zhandry’11].
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Hard Problem / \@

Programmed
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Signature

Formalized by [Boneh-Dagdelen-Fischlin-
Lehmann-Schaffner-Zhandry’11].
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Queries answered
Hard Problem / \@

independently of the
istory” of previous queries.
ROM security proof of history-free
signatures can be lifted to (plain) QROM

[Boneh-Dagdelen-Fischlin-Lehmann-
Schaffner-Zhandry’11].

Programmed
Oracle

1

History-Free
Signature

SO

Formalized by [Boneh-Dagdelen-Fischlin-
Lehmann-Schaffner-Zhandry’11].



EUF-CMA Secure Signhatures in NO QROM

Hard Problem /@\

'\Wlﬂogrammed

ROM security proof of history-free
signatures can be lifted to (plain) QROM
[Boneh-Dagdelen-Fischlin-Lehmann-
Schaffner-Zhandry’11].

We extend the above result to show
security in the NO QROM [Alamati-
Maram-Masny’23].

Lattice-based signatures of [Gentry-
Peikert-Vaikuntanathan’08] and Fiat-
Shamir signatures in [Kiltz-Lyubashevsky-
Schaffner’18] are history-free.

dih

Queries answered
independently of the
“history” of previous queries.

Oracle

1

History-Free
Signature

Formalized by [Boneh-Dagdelen-Fischlin-
Lehmann-Schaffner-Zhandry’11].
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However, above security proofs crucially
rely on observability (and programmability). CCA-Secure PKE

Transformation introduced by
[Fujisaki-Okamoto’99].
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Shown to be secure in the classical ROM by
[Fujisaki-Okamoto’99].

Random
Was later proven to be secure in the (plain) Oracle
QROM by [Don-Fehr-Majenz-Schaffner’22]. “l
However, above security proofs crucially
rely on observability (and programmability). CCA-Secure PKE
We provide an alternative “CPA — CCA” Transformation introduced by
transform that can be proven secure in the [Alamati-Maram-Masny’23]

NO QROM...[Alamati-Maram-Masny’23]
e ... but at the expense of efficiency.
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Shown to be secure in the classical ROM by
[Fujisaki-Okamoto’99].

Random
* Was later proven to be secure in the (plain) Oracle
QROM by [Don-Fehr-Majenz-Schaffner’22]. “l
 However, above security proofs crucially
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Shown to be secure in the classical ROM by
[Fujisaki-Okamoto’99].

Msg

Random

* Was later proven to be secure in the (plain) Oracle

QROM by [Don-Fehr-Majenz-Schaffner’22].

 However, above security proofs crucially
rely on observability (and programmability).

 We provide an alternative “CPA — CCA”
transform that can be proven secure in the
NO QROM...[Alamati-Maram-Masny’23]
e ... but at the expense of efficiency.
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[Fujisaki-Okamoto’99]. / 3820
“Hinting”

Was later proven to be secure in the (plain) + PRG
QROM by [Don-Fehr-Majenz-Schaffner’22].

However, above security proofs crucially

rely on observability (and programmability). CCA-Secure PKE
We provide an alternative “CPA — CCA” Construction by
transform that can be proven secure in the [Koppula-Waters’19].

NO QROM...[Alamati-Maram-Masny’23]
e ... but at the expense of efficiency.
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CPA-SECU re P KE NINE NINE

NINE NINE
NINE NINE

PRG with a stronger

Shown to be secure in the classical ROM by security guarantee.

[Fujisaki-Okamoto’99]. / 3820
“Hinting”

Was later proven to be secure in the (plain) + PRG
QROM by [Don-Fehr-Majenz-Schaffner’22].

However, above security proofs crucially

rely on observability (and programmability). CCA-Secure PKE
We provide an alternative “CPA — CCA” Construction by
transform that can be proven secure in the [Koppula-Waters’19].

NO QROM...[Alamati-Maram-Masny’23]
e ... but at the expense of efficiency.
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(”Behaves" as a hinting\
PRG in the NO QROM
[Alamati-Maram-
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Random %

CPA-Secure PKE \

Shown to be secure in the classical ROM by
[Fujisaki-Okamoto’99].

.9.

Was later proven to be secure in the (plain) Oracle

QROM by [Don-Fehr-Majenz-Schaffner’22]. “l

However, above security proofs crucially

rely on observability (and programmability). CCA-Secure PKE
We provide an alternative “CPA — CCA” Construction by
transform that can be proven secure in the [Koppula-Waters’19].

NO QROM...[Alamati-Maram-Masny’23]
e ... but at the expense of efficiency.




CCA-Secure Public-Key Encryption in NO QROM

(”Behaves" as a hinting\
PRG in the NO QROM
[Alamati-Maram-

Masny’23]. )
Random % )

Shown using a “non-
Oracle Lo
observable” variant of

CPA-Secure PKE \

Shown to be secure in the classical ROM by
[Fujisaki-Okamoto’99].

.9.

QROM by [Don-Fehr-Majenz-Schaffner’22]. the OW2H technique
: : Tl of [Unruh’16]. )
However, above security proofs crucially
rely on observability (and programmability). CCA-Secure PKE
We provide an alternative “CPA — CCA” Construction by
transform that can be proven secure in the [Koppula-Waters’19].

Was later proven to be secure in the (plain)

NO QROM...[Alamati-Maram-Masny’23]
e ... but at the expense of efficiency.
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