Anonymous, Robust Post-Quantum Public Key Encryption

Varun Maram Applied Cryptography Group ETH Zurich

Joint work with Paul Grubbs and Kenneth G. Paterson [Full version of paper: <u>https://eprint.iacr.org/2021/708.pdf</u>]

From Handbook of Applied Cryptography (http://cacr.uwaterloo.ca/hac):

Definition (Cryptography)

Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication, and data origin authentication.

From Handbook of Applied Cryptography (http://cacr.uwaterloo.ca/hac):

Definition (Cryptography)

Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication, and data origin authentication.

• Historically, *cryptography* is only associated with *encryption/confidentiality*.

From Handbook of Applied Cryptography (http://cacr.uwaterloo.ca/hac):

Definition (Cryptography)

Cryptography is the study of mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication, and data origin authentication.

- Historically, *cryptography* is only associated with *encryption/confidentiality*.
- But it is much more than that!

• e-commerce

- e-commerce
- social media

- e-commerce
- social media
- secure messaging (WhatsApp, Signal, Telegram)

- e-commerce
- social media
- secure messaging (WhatsApp, Signal, Telegram)
- online personal banking
- debit/credit card payments
- interbank payments
- mobile telephony

- VPN/remote access
- video conferencing
- secure cloud data storage
- privacy-preserving contact tracing (GAEN, DP3T)
- Cryptocurrencies
- military and government communications systems

- e-commerce
- social media
- secure messaging (WhatsApp, Signal, Telegram)
- online personal banking
- debit/credit card payments
- interbank payments
- mobile telephony

- VPN/remote access
- video conferencing
- secure cloud data storage
- privacy-preserving contact tracing (GAEN, DP3T)
- Cryptocurrencies
- military and government communications systems

... and more!

Under the Hood

Under the Hood

google.com	① rc4.badssl.com
	ScholarOne Manu 🦂 Editorial Manager® 🧧 💘 dblp: IACR Cryptol
Connection is secure	
Your information (for example, passwords or credit	
card numbers) is private when it is sent to this	
site. Learn more	EL S
Location Block V	
	This site can't provide a secure connection
Certificate (Valid)	rc4.badssl.com uses an unsupported protocol.
	ERR_SSL_VERSION_OR_CIPHER_MISMATCH
Cookies (23 in use)	
Site settings	
	Details

Under the Hood – the TLS 1.3 Handshake <u>Client</u> <u>Server</u>

Under the Hood – the TLS 1.3 Handshake

Bird's-eye View

Bird's-eye View

Bird's-eye View

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer^{*}

Peter W. Shor[†]

Abstract

A digital computer is generally believed to be an efficient universal computing device; that is, it is believed able to simulate any physical computing device with an increase in computation time by at most a polynomial factor. This may not be true when quantum mechanics is taken into consideration. This paper considers factoring integers and finding discrete logarithms, two problems which are generally thought to be hard on a classical computer and which have been used as the basis of several proposed cryptosystems. Efficient randomized algorithms are given for these two problems on a hypothetical quantum computer. These algorithms take a number of steps polynomial in the input size, e.g., the number of digits of the integer to be factored.

[FOCS'94]

EXPERTS' ESTIMATES OF THE LIKELIHOOD OF A QUANTUM COMPUTER ABLE TO BREAK RSA-2048 IN 24 HOURS

The experts were asked to indicate their estimate for the likelihood of a quantum computer that is cryptographically relevant—in the specific sense of being able to break RSA-2048 quickly—for various time frames, from a short term of 5 years all the way to 30 years.

[Image: Global Risk Institute, 2021 Quantum Threat Timeline Report]

Conventional public-key cryptosystems that resist known quantum algorithms.

NIST Kicks Off Effort to Defend Encrypted Data from Quantum Computer Threat

April 28, 2016

road ahead.

computers are built? A new NIST publication looks to the

If an exotic quantum computer is invented that could break the codes we depend on to protect confidential electronic information, what will we do to maintain our security and privacy? That's the overarching question posed by a new report from the National Institute of Standards and Technology (NIST), whose cryptography specialists are beginning the long journey toward effective answers.

NIST Internal Report (NISTIB) 8105: Report on Post-Quantum Cryotography details the status of research into quantum computers, which would exploit the often counterintuitive world of quantum physics to solve problems that are intractable for conventional computers. If such devices are ever built, they will be able to defeat many of our modern cryptographic systems, such as the computer algorithms used to protect online bank transactions. NISTIR 8105 outlines a long-term approach for avoiding this vulnerability before it arises.

MEDIA CONTACT

Chad Boutin charles.boutin@nist.gov (301) 975-4261

A ORGANIZATIONS

Information Technology Laboratory Computer Security Division

SIGN UP FOR UPDATES FROM NIST

Enter Email Address

"It will be a long process involving public vetting of quantum-resistant algorithms," Moody said. "And we're not expecting to have just one winner. There are several systems in use that could be broken by a quantum computer public-key encryption and digital signatures, to take two examples—and we will need different solutions for each of those systems."

Conventional public-key cryptosystems that resist known quantum algorithms.

NIST <u>Kicks Off Effort to Defend Encrypted</u> Computer Threat April 28, 2016	Data from Quantum	US National Institute for Standards in Technology
Final expectationFinal expectation	MEDIA CONTACT Chad Boutin charles.boutin@nist.gov= (301) 975-4261 Computer Security Division SIGN UP FOR UPDATES FROM NIST Enter Email Address	 Is a part of the US Department of Commerce.
"It will be a long process involving public vetting of quantum-resistant algori expecting to have just one winner. There are several systems in use that could public-key encryption and digital signatures, to take two examples—and we of those systems."	thms," Moody said. "And we're not d be broken by a quantum computer— will need different solutions for each	

Conventional public-key cryptosystems that resist known quantum algorithms.

NIST <u>Kicks Off Effor</u> Computer Threat	rt to Defend Encrypted	Data from Quantum	US National Institute for Standards in Technology
Final states of the constant of the constan	MEDIA CONTACT Chad Boutin charles.boutin@nist.gov= (301) 975-4261	 Is a part of the US Department of Commerce. 	
	ORGANIZATIONS Information Technology Laboratory Computer Security Division	 Publishes many basic cryptographic standards. 	
	SIGN UP FOR UPDATES FROM NIST		
	Enter Email Address		
"It will be a long process involvin expecting to have just one winne public-key encryption and digita of those systems."	g public vetting of quantum-resistant algorit r. There are several systems in use that coulc <mark>l signatures</mark> , to take two examples—and we v	hms," Moody said. "And we're not I be broken by a quantum computer— vill need different solutions for each	

Conventional public-key cryptosystems that resist known quantum algorithms.

"It will be a long process involving public vetting of quantum-resistant algorithms," Moody said. "And we're not expecting to have just one winner. There are several systems in use that could be broken by a quantum computer public-key encryption and digital signatures, to take two examples—and we will need different solutions for each of those systems." US National Institute for Standards in Technology

- Is a part of the US Department of Commerce.
- Publishes many basic cryptographic standards.
- These standards become de facto global standards for cryptography (notwithstanding algorithms from China, Russia, etc).

Conventional public-key cryptosystems that resist known quantum algorithms.

NIST Kicks Off Effort to Defend Encrypted Data from Quantum			
April 28, 2016			
2011	If an exotic quantum computer is invented that could break the codes we depend on to protect confidential electronic information, what will we do to maintain our security and privacy? That's the overarching question posed by a new report from the National Institute of Standards and Technology (NIST), whose cryptography specialists are beginning the long journey toward effective answers. <u>NIST Internal Report (NISTIR) 8105: Report on Post- Quantum Cryptography</u> details the status of research into quantum computers, which would exploit the often counterintuitive world of quantum physics to solve	MEDIA CONTACT Chad Boutin charles.boutin@nist.govm (301) 975-4261 Chad Boutin Charles.boutin@nist.govm (301) 975-4261 Charles.boutin@nist.govm (301) 975-426	
that will happen to computer security if quantum omputers are built? A new NIST publication looks to the aad ahead. redit: Hanocek/NIST	problems that are intractable for conventional computers. If such devices are ever built, they will be able to defeat many of our modern cryptographic systems, such as the computer algorithms used to protect online bank transactions. NISTIR 8105 outlines a long-term approach for avoiding this vulnerability before it arises.	SIGN UP FOR UPDATES FROM NIST Enter Email Address	

"It will be a long process involving public vetting of quantum-resistant algorithms," Moody said. "And we're not expecting to have just one winner. There are several systems in use that could be broken by a quantum computer public-key encryption and digital signatures, to take two examples—and we will need different solutions for each of those systems." US National Institute for Standards in Technology

- Is a part of the US Department of Commerce.
- Publishes many basic cryptographic standards.
- These standards become de facto global standards for cryptography (notwithstanding algorithms from China, Russia, etc).
- They are often adopted by other standards bodies, e.g. IETF and ISO.

- <u>http://csrc.nist.gov/groups/ST/post-quantum-crypto/</u>
- Formal project start: 2012.
- Evaluation criteria: security, cost, flexibility/simplicity/adoptability.

- <u>http://csrc.nist.gov/groups/ST/post-quantum-crypto/</u>
- Formal project start: 2012.
- Evaluation criteria: security, cost, flexibility/simplicity/adoptability.
- Process (5-7 years):

- <u>http://csrc.nist.gov/groups/ST/post-quantum-crypto/</u>
- Formal project start: 2012.
- Evaluation criteria: security, cost, flexibility/simplicity/adoptability.
- Process (5-7 years):

- http://csrc.nist.gov/groups/ST/post-quantum-crypto/
- Formal project start: 2012.
- Evaluation criteria: security, cost, flexibility/simplicity/adoptability.
- Process (5-7 years):

- http://csrc.nist.gov/groups/ST/post-quantum-crypto/
- Formal project start: 2012.
- Evaluation criteria: security, cost, flexibility/simplicity/adoptability.
- Process (5-7 years):

PQC Standardization Process: Third Round Candidate Announcement

NIST is announcing the third round finalists of the NIST Post-Quantum Cryptography Standardization Process. More details are included in NISTIR 8309.

July 22, 2020

It has been almost a year and a half since the second round of the NIST PQC Standardization Process began. After careful consideration, NIST would like to announce the candidates that will be moving on to the third round.

Third Round Finalists	Alternate Candidates
Public-Key Encryption/KEMs	Public-Key Encryption/KEMs
Classic McEliece	BIKE
CRYSTALS-KYBER	FrodoKEM
NTRU	HQC
SABER	NTRU Prime
	SIKE

A ORGANIZATIONS

Information Technology Laboratory Computer Security Division Cryptographic Technology Group

PQC Standardization Process: Third Round Candidate Announcement

NIST is announcing the third round finalists of the NIST Post-Quantum Cryptography Standardization Process. More details are included in NISTIR 8309.

July 22, 2020

It has been almost a year and a half since the second round of the NIST PQC Standardization Process began. After careful consideration, NIST would like to announce the candidates that will be moving on to the third round.

Third Round Finalists	Alternate Candidates
Public-Key Encryption/KEMs	Public-Key Encryption/KEMs
Classic McEliece	BIKE
CRYSTALS-KYBER	FrodoKEM
NTRU	HQC
SABER	NTRU Prime
	SIKE

A ORGANIZATIONS

Information Technology Laboratory Computer Security Division Cryptographic Technology Group

PQC Standardization Process: Third Round Candidate Announcement

NIST is announcing the third round finalists of the NIST Post-Quantum Cryptography Standardization Process. More details are included in NISTIR 8309.

July 22, 2020			Classic McEliece: conservative code-based cryptography 10 October 2020
It has been almost a year and a half since the second round of the NIST PQC Standardization Process began. Afte careful consideration, NIST would like to announce the candidates that will be moving on to the third round.		 Principal submitter This submission is from the following team, listed in alphabetical order: Martin R. Albrecht, Information Security Group, Royal Holloway, University of London Daniel J. Bernstein, University of Illinois at Chicago and Ruhr University Bochum 	
Third Round Finalists	Alternate Candidates		 Tung Chou, Academia Sinica Carlos Cid, Royal Holloway, University of London and Simula UiB Jan Gilcher, ETH Zürich
Public-Key Encryption/KEMs Classic McEliece CRYSTALS-KYBER NTRU SABER	Public-Key Encryption/KEMs BIKE ErodoKEM HQC NTRU Prime SIKE		 Tanja Lange, Eindhoven University of Technology Varun Maram, ETH Zürich Ingo von Maurich, self Rafael Misoczki, Google Ruben Niederhagen, University of Southern Denmark Kenneth G. Paterson, ETH Zürich Edoardo Persichetti, Florida Atlantic University Christiane Peters, self Peter Schwabe, Max Planck Institute for Security and Privacy & Radboud University Nicolas Sendrier, Inria Jakub Szefer, Yale University Cen Jung Tjhai, PQ Solutions Ltd. Martin Tomlinson, PO Solutions Ltd.

Alice

Alice

PQC Standardization Process: Third Round Candidate Announcement

NIST is announcing the third round finalists of the NIST Post-Quantum Cryptography Standardization Process. More details are included in NISTIR 8309.

July 22, 2020

It has been almost a year and a half since the second round of the NIST PQC Standardization Process began. After careful consideration, NIST would like to announce the candidates that will be moving on to the third round.

Third Round Finalists	Alternate Candidates
Public-Key Encryption/KEMs	Public-Key Encryption/KEMs
Classic McEliece	BIKE
CRYSTALS-KYBER	FrodoKEM
NTRU	HQC
SABER	NTRU Prime
	SIKE

A ORGANIZATIONS

Information Technology Laboratory Computer Security Division Cryptographic Technology Group

PQC Standardization Process: Third Round Candidate Announcement

NIST is announcing the third round finalists of the NIST Post-Quantum Cryptography Standardization Process. More details are included in NISTIR 8309.

July 22, 2020

It has been almost a year and a half since the second round of the NIST PQC Standardization Process began. After careful consideration, NIST would like to announce the candidates that will be moving on to the third round.

ORGANIZATIONS

Third Round Finalists	Alternate Candidates	Information Technology Laboratory
		Computer Security Division
Public-Key Encryption/KEMs	Public-Key Encryption/KEMs	Cryptographic Technology Group
Classic McEliece	BIKE	
CRYSTALS-KYBER	FrodoKEM	4 A 2 Security Definition for Encryption/Key-Establishment
NTRU	HQC	NIST intends to standardize one or more schemes that enable "semantically secure"
SABER	NTRU Prime	encryption or key encapsulation with respect to adaptive chosen ciphertext attack, for
	SIKE	general use. This property is generally denoted IND-CCA2 security in academic
		literature.

IND-CCA Security

IND-CCA Security

IND-CCA Security

Robustness

PQC and NIST

PQC Standardization Process: Third Round Candidate Announcement

NIST is announcing the third round finalists of the NIST Post-Quantum Cryptography Standardization Process. More details are included in NISTIR 8309.

July 22, 2020

It has been almost a year and a half since the second round of the NIST PQC Standardization Process began. After careful consideration, NIST would like to announce the candidates that will be moving on to the third round.

Third Round Finalists	Alternate Candidates
Public-Key Encryption/KEMs	Public-Key Encryption/KEMs
Classic McEliece	BIKE
CRYSTALS-KYBER	FrodoKEM
NTRU	HQC
SABER	NTRU Prime
	SIKE

A ORGANIZATIONS

Information Technology Laboratory Computer Security Division Cryptographic Technology Group

PQC and NIST

PQC Standardization Process: Third Round Candidate Announcement

NIST is announcing the third round finalists of the NIST Post-Quantum Cryptography Standardization Process. More details are included in NISTIR 8309.

July 22, 2020

It has been almost a year and a half since the second round of the NIST PQC Standardization Process began. After careful consideration, NIST would like to announce the candidates that will be moving on to the third round.

Third Round Finalists

Public-Key Encryption/KEMs Classic McEliece CRYSTALS-KYBER NTRU SABER Alternate Candidates
Public-Key Encryption/KEMs
BIKE
FrodoKEM
HQC
NTRU Prime
SIKE

A ORGANIZATIONS

Information Technology Laboratory Computer Security Division Cryptographic Technology Group

• <u>Classic McEliece cannot be (strongly) robust</u>.

- <u>Classic McEliece cannot be (strongly) robust</u>.
 - As a result, our techniques cannot be used to prove its anonymity.

- <u>Classic McEliece cannot be (strongly) robust</u>.
 - As a result, our techniques cannot be used to prove its anonymity.
 - However, Classic McEliece was shown to offer anonymity in [Xag21].

- <u>Classic McEliece cannot be (strongly) robust</u>.
 - As a result, our techniques cannot be used to prove its anonymity.
 - However, Classic McEliece was shown to offer anonymity in [Xag21].
- <u>CRYSTALS-KYBER</u> and <u>SABER</u> do result in robust PKE schemes.

- <u>Classic McEliece cannot be (strongly) robust</u>.
 - As a result, our techniques cannot be used to prove its anonymity.
 - However, Classic McEliece was shown to offer anonymity in [Xag21].
- <u>CRYSTALS-KYBER</u> and <u>SABER</u> do result in robust PKE schemes.
 - But we identified barriers towards proving anonymity of these two schemes.

- <u>Classic McEliece cannot be (strongly) robust</u>.
 - As a result, our techniques cannot be used to prove its anonymity.
 - However, Classic McEliece was shown to offer anonymity in [Xag21].
- <u>CRYSTALS-KYBER</u> and <u>SABER</u> do result in robust PKE schemes.
 - But we identified barriers towards proving anonymity of these two schemes.
 - Interestingly, these same barriers also imply that the "level" of IND-CCA security offered by these schemes is overestimated by their respective teams.

- <u>Classic McEliece cannot be (strongly) robust</u>.
 - As a result, our techniques cannot be used to prove its anonymity.
 - However, Classic McEliece was shown to offer anonymity in [Xag21].
- <u>CRYSTALS-KYBER</u> and <u>SABER</u> do result in robust PKE schemes.
 - But we identified barriers towards proving anonymity of these two schemes.
 - Interestingly, these same barriers also imply that the "level" of IND-CCA security offered by these schemes is **overestimated** by their respective teams.
- <u>FrodoKEM</u> does result in anonymous and robust PKE schemes.